IEEE Trans Image Process. 2017 Jul;26(7):3113-3127. doi: 10.1109/TIP.2017.2651379. Epub 2017 Jan 10.
Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user relevance feedback capturing users' intentions and multiple features that sufficiently describe the images. In DMINTIR, heterogeneous property features are incorporated in the multi-view learning scheme to exploit their complementarities. In addition, a discriminatively learned weight vector is obtained to reassign updated scores and target images for re-ranking. Compared with other multi-view learning techniques, our scheme not only generates a compact representation in the latent space from the redundant multi-view features but also maximally preserves the discriminative information in feature encoding by the large-margin principle. Furthermore, the generalization error bound of the proposed algorithm is theoretically analyzed and shown to be improved by the interactions between the latent space and discriminant function learning. Experimental results on two benchmark data sets demonstrate that our approach boosts baseline retrieval quality and is competitive with the other state-of-the-art re-ranking strategies.
在存在不可靠视觉模式和查询信息不足的情况下,基于内容的图像检索往往效果不佳,需要使用辅助信息对图像进行重新排序。在本文中,我们提出了一种判别式多视角交互式图像重新排序(DMINTIR)方法,该方法集成了用户相关性反馈,以捕捉用户的意图和充分描述图像的多种特征。在 DMINTIR 中,将异构属性特征纳入多视图学习方案中,以利用它们的互补性。此外,通过判别学习得到一个权重向量,以便为重新排序重新分配更新后的得分和目标图像。与其他多视图学习技术相比,我们的方案不仅可以从冗余的多视图特征中生成一个紧凑的表示,而且还可以通过大间隔原理最大程度地保留特征编码中的判别信息。此外,还从理论上分析了所提出算法的泛化误差界,并表明该算法通过潜在空间和判别函数学习之间的交互得到了改善。在两个基准数据集上的实验结果表明,我们的方法可以提高基线检索质量,并且与其他最新的重新排序策略具有竞争力。