IEEE Trans Image Process. 2017 Apr;26(4):1554-1564. doi: 10.1109/TIP.2017.2651392. Epub 2017 Jan 11.
Minimizing L gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L gradient is less than a user-given parameter α . This strategy is much more intuitive than the L gradient minimization because the parameter α has a clear meaning: the L gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.
最小化 L 梯度,即图像中非零梯度的数量,同时对输入图像进行二次数据保真度处理,已被认为是一种强大的边缘保持滤波方法。然而,L 梯度最小化存在一个固有的困难:用户给定的控制平坦度的参数没有物理意义,因为该参数只是平衡了 L 梯度项相对于二次数据保真度项的相对重要性。因此,在 L 梯度最小化中,参数的设置是一项麻烦的工作。为了规避这一困难,我们提出了一种新的边缘保持滤波方法,巧妙地利用了 L 梯度。我们的方法是在二次数据保真度的约束下最小化,其中硬约束条件是 L 梯度小于用户给定的参数 α。这种策略比 L 梯度最小化更直观,因为参数 α 具有明确的意义:输出图像本身的 L 梯度值,因此可以直接通过 α 施加所需的平坦度。我们还提供了一种基于交替方向乘子法的有效算法,用于计算非凸问题的近似解,其中我们将其分解为两个子问题,并推导出它们的闭式解。通过广泛的实验证明了我们方法的优势。