Suppr超能文献

神经形态学与神经力学相遇,第二部分:肌梭运动驱动的作用。

Neuromorphic meets neuromechanics, part II: the role of fusimotor drive.

作者信息

Jalaleddini Kian, Minos Niu Chuanxin, Chakravarthi Raja Suraj, Joon Sohn Won, Loeb Gerald E, Sanger Terence D, Valero-Cuevas Francisco J

机构信息

Division of Biokinesiology and Physical Therapy, University of Southern California, CA, United States of America.

出版信息

J Neural Eng. 2017 Apr;14(2):025002. doi: 10.1088/1741-2552/aa59bd. Epub 2017 Jan 17.

Abstract

OBJECTIVE

We studied the fundamentals of muscle afferentation by building a Neuro-mechano-morphic system actuating a cadaveric finger. This system is a faithful implementation of the stretch reflex circuitry. It allowed the systematic exploration of the effects of different fusimotor drives to the muscle spindle on the closed-loop stretch reflex response.

APPROACH

As in Part I of this work, sensory neurons conveyed proprioceptive information from muscle spindles (with static and dynamic fusimotor drive) to populations of α-motor neurons (with recruitment and rate coding properties). The motor commands were transformed into tendon forces by a Hill-type muscle model (with activation-contraction dynamics) via brushless DC motors. Two independent afferented muscles emulated the forces of flexor digitorum profundus and the extensor indicis proprius muscles, forming an antagonist pair at the metacarpophalangeal joint of a cadaveric index finger. We measured the physical response to repetitions of bi-directional ramp-and-hold rotational perturbations for 81 combinations of static and dynamic fusimotor drives, across four ramp velocities, and three levels of constant cortical drive to the α-motor neuron pool.

MAIN RESULTS

We found that this system produced responses compatible with the physiological literature. Fusimotor and cortical drives had nonlinear effects on the reflex forces. In particular, only cortical drive affected the sensitivity of reflex forces to static fusimotor drive. In contrast, both static fusimotor and cortical drives reduced the sensitivity to dynamic fusimotor drive. Interestingly, realistic signal-dependent motor noise emerged naturally in our system without having been explicitly modeled.

SIGNIFICANCE

We demonstrate that these fundamental features of spinal afferentation sufficed to produce muscle function. As such, our Neuro-mechano-morphic system is a viable platform to study the spinal mechanisms for healthy muscle function-and its pathologies such as dystonia and spasticity. In addition, it is a working prototype of a robust biomorphic controller for compliant robotic limbs and exoskeletons.

摘要

目的

我们通过构建一个驱动尸体手指的神经机械形态系统来研究肌肉传入的基本原理。该系统是牵张反射回路的忠实实现。它允许系统地探索不同的肌梭运动驱动对闭环牵张反射反应的影响。

方法

与本研究的第一部分一样,感觉神经元将来自肌梭的本体感觉信息(具有静态和动态肌梭运动驱动)传递给α运动神经元群体(具有募集和速率编码特性)。运动指令通过无刷直流电机由希尔型肌肉模型(具有激活-收缩动力学)转换为肌腱力。两块独立的传入肌肉模拟了指深屈肌和示指固有伸肌的力量,在尸体示指的掌指关节处形成一对拮抗肌。我们测量了在四个斜坡速度和三个恒定皮质驱动水平下,针对81种静态和动态肌梭运动驱动组合的双向斜坡-保持旋转扰动重复的物理反应。

主要结果

我们发现该系统产生的反应与生理学文献一致。肌梭运动和皮质驱动对反射力有非线性影响。特别是,只有皮质驱动影响反射力对静态肌梭运动驱动的敏感性。相比之下,静态肌梭运动和皮质驱动都降低了对动态肌梭运动驱动的敏感性。有趣的是,逼真的信号依赖型运动噪声在我们的系统中自然出现,而无需明确建模。

意义

我们证明了脊髓传入的这些基本特征足以产生肌肉功能。因此,我们的神经机械形态系统是研究健康肌肉功能的脊髓机制及其诸如肌张力障碍和痉挛等病理状况的可行平台。此外,它是用于柔顺机器人肢体和外骨骼的强大生物形态控制器的工作原型。

相似文献

1
Neuromorphic meets neuromechanics, part II: the role of fusimotor drive.
J Neural Eng. 2017 Apr;14(2):025002. doi: 10.1088/1741-2552/aa59bd. Epub 2017 Jan 17.
2
Neuromorphic meets neuromechanics, part I: the methodology and implementation.
J Neural Eng. 2017 Apr;14(2):025001. doi: 10.1088/1741-2552/aa593c. Epub 2017 Jan 13.
3
Physiological tremor increases when skeletal muscle is shortened: implications for fusimotor control.
J Physiol. 2017 Dec 15;595(24):7331-7346. doi: 10.1113/JP274899. Epub 2017 Nov 19.
4
Effects on the fusimotor-muscle spindle system induced by intramuscular injections of hypertonic saline.
Exp Brain Res. 2002 Feb;142(3):319-26. doi: 10.1007/s00221-001-0941-4. Epub 2001 Dec 13.
5
Reflex gain of muscle spindle pathways during fatigue.
Exp Brain Res. 2007 Feb;177(2):157-66. doi: 10.1007/s00221-006-0656-7. Epub 2006 Aug 22.
7
Regulation of soleus muscle spindle sensitivity in decerebrate and spinal cats during postural and locomotor activities.
J Physiol. 1996 Sep 15;495 ( Pt 3)(Pt 3):835-50. doi: 10.1113/jphysiol.1996.sp021636.
9
Role of the human fusimotor system in a motor adaptation task.
J Physiol. 1988 Jul;401:77-95. doi: 10.1113/jphysiol.1988.sp017152.
10

引用本文的文献

1
Adaptive walking performance is related to the hip joint position sense during active hip flexion rather than during passive hip flexion.
Front Sports Act Living. 2025 Feb 13;7:1510447. doi: 10.3389/fspor.2025.1510447. eCollection 2025.
2
A computational study of how an α- to γ-motoneurone collateral can mitigate velocity-dependent stretch reflexes during voluntary movement.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2321659121. doi: 10.1073/pnas.2321659121. Epub 2024 Aug 8.
3
Biohybrid Robotic Hand to Investigate Tactile Encoding and Sensorimotor Integration.
Biomimetics (Basel). 2024 Jan 27;9(2):78. doi: 10.3390/biomimetics9020078.
6
Numerical instability of Hill-type muscle models.
J R Soc Interface. 2023 Feb;20(199):20220430. doi: 10.1098/rsif.2022.0430. Epub 2023 Feb 1.
7
Methodological advances for studying gamma motor neurons.
Curr Opin Physiol. 2021 Feb;19:135-140. doi: 10.1016/j.cophys.2020.10.002. Epub 2020 Oct 14.
8
Control of Mammalian Locomotion by Somatosensory Feedback.
Compr Physiol. 2021 Dec 29;12(1):2877-2947. doi: 10.1002/cphy.c210020.
9
Constraint-induced intervention as an emergent phenomenon from synaptic competition in biological systems.
J Comput Neurosci. 2021 May;49(2):175-188. doi: 10.1007/s10827-021-00782-9. Epub 2021 Apr 6.

本文引用的文献

1
A Subspace Approach to the Structural Decomposition and Identification of Ankle Joint Dynamic Stiffness.
IEEE Trans Biomed Eng. 2017 Jun;64(6):1357-1368. doi: 10.1109/TBME.2016.2604293. Epub 2016 Aug 31.
2
Neuromorphic meets neuromechanics, part I: the methodology and implementation.
J Neural Eng. 2017 Apr;14(2):025001. doi: 10.1088/1741-2552/aa593c. Epub 2017 Jan 13.
3
The Dynamics of Voluntary Force Production in Afferented Muscle Influence Involuntary Tremor.
Front Comput Neurosci. 2016 Aug 19;10:86. doi: 10.3389/fncom.2016.00086. eCollection 2016.
4
Muscle Synergies Heavily Influence the Neural Control of Arm Endpoint Stiffness and Energy Consumption.
PLoS Comput Biol. 2016 Feb 11;12(2):e1004737. doi: 10.1371/journal.pcbi.1004737. eCollection 2016 Feb.
5
Modeling and Identification of a Realistic Spiking Neural Network and Musculoskeletal Model of the Human Arm, and an Application to the Stretch Reflex.
IEEE Trans Neural Syst Rehabil Eng. 2016 May;24(5):591-602. doi: 10.1109/TNSRE.2015.2478858. Epub 2015 Sep 17.
6
Motor Neuron Pools of Synergistic Thigh Muscles Share Most of Their Synaptic Input.
J Neurosci. 2015 Sep 2;35(35):12207-16. doi: 10.1523/JNEUROSCI.0240-15.2015.
7
Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models.
J Biomech. 2015 Aug 20;48(11):2887-96. doi: 10.1016/j.jbiomech.2015.04.026. Epub 2015 Apr 22.
8
Increased long-latency reflex activity as a sufficient explanation for childhood hypertonic dystonia: a neuromorphic emulation study.
J Neural Eng. 2015 Jun;12(3):036010. doi: 10.1088/1741-2560/12/3/036010. Epub 2015 May 6.
9
10
Identification of intrinsic and reflexive contributions to low-back stiffness: medium-term reliability and construct validity.
J Biomech. 2015 Jan 21;48(2):254-61. doi: 10.1016/j.jbiomech.2014.11.036. Epub 2014 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验