Suppr超能文献

人体手臂真实的尖峰神经网络和肌肉骨骼模型的建模与辨识,及其在拉伸反射中的应用。

Modeling and Identification of a Realistic Spiking Neural Network and Musculoskeletal Model of the Human Arm, and an Application to the Stretch Reflex.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2016 May;24(5):591-602. doi: 10.1109/TNSRE.2015.2478858. Epub 2015 Sep 17.

Abstract

This study develops a multi-level neuromuscular model consisting of topological pools of spiking motor, sensory and interneurons controlling a bi-muscular model of the human arm. The spiking output of motor neuron pools were used to drive muscle actions and skeletal movement via neuromuscular junctions. Feedback information from muscle spindles were relayed via monosynaptic excitatory and disynaptic inhibitory connections, to simulate spinal afferent pathways. Subject-specific model parameters were identified from human experiments by using inverse dynamics computations and optimization methods. The identified neuromuscular model was used to simulate the biceps stretch reflex and the results were compared to an independent dataset. The proposed model was able to track the recorded data and produce dynamically consistent neural spiking patterns, muscle forces and movement kinematics under varying conditions of external forces and co-contraction levels. This additional layer of detail in neuromuscular models has important relevance to the research communities of rehabilitation and clinical movement analysis by providing a mathematical approach to studying neuromuscular pathology.

摘要

本研究开发了一个多层次的神经肌肉模型,该模型由控制人体手臂双肌肉模型的尖峰运动、感觉和中间神经元的拓扑池组成。运动神经元池的尖峰输出通过神经肌肉接头驱动肌肉动作和骨骼运动。来自肌梭的反馈信息通过单突触兴奋性和双突触抑制性连接传递,以模拟脊髓传入途径。通过逆动力学计算和优化方法,从人体实验中确定了特定于主体的模型参数。所识别的神经肌肉模型用于模拟肱二头肌拉伸反射,并将结果与独立数据集进行比较。在所研究的各种外力和协同收缩水平条件下,该模型能够跟踪记录数据并产生动态一致的神经尖峰模式、肌肉力和运动运动学。通过提供一种研究神经肌肉病理学的数学方法,神经肌肉模型中这种额外的细节层对于康复和临床运动分析研究社区具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验