Institute for Molecular Science and Research Center for Computational Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan.
Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University , Kyoto 615-8520, Japan.
J Org Chem. 2017 Feb 17;82(4):2150-2159. doi: 10.1021/acs.joc.6b02957. Epub 2017 Jan 31.
The reaction mechanism and origins of ligand-controlled selectivity, regioselectivity, and stereoselectivity of Ni-catalyzed (2 + 2 + 2) cycloadditions and alkenylative cyclizations of 1,6-ene-allenes and alkenes were studied by using density functional theory. The catalytic cycle involves intermolecular oxidative coupling and an intramolecular concerted 1,4-addition step to afford a stable metallacycloheptane intermediate; these steps determine both the regioselectivity and stereoselectivity. Subsequent C-C reductive elimination leads to the cyclohexane product, whereas the β-hydride elimination leads to the trans-diene product. The selectivity between (2 + 2 + 2) cycloadditions and alkenylative cyclizations is controlled by the ligand. Irrespective of the nature of the terminal substituents on the ene-allene and alkene, the P(o-tol) ligand always favors the C-C reductive elimination, resulting in the cyclohexane product. On the other hand, the flexibility of the PBu ligand means that electronic and steric factors play important roles. Electron-withdrawing groups such as COMe in the ene-allene terminal substituent induce obvious substrate-ligand repulsion and destabilize the C-C reductive elimination, giving rise to the trans-diene product.
采用密度泛函理论研究了镍催化的(2+2+2)环加成和烯丙基环化反应中 1,6-烯-丙二烯和烯烃的配体控制选择性、区域选择性和立体选择性的反应机理和起源。催化循环涉及分子间氧化偶联和分子内协同 1,4-加成步骤,以提供稳定的金属环庚烷中间体;这些步骤决定了区域选择性和立体选择性。随后的 C-C 还原消除导致环己烷产物,而β-氢消除导致反式二烯产物。(2+2+2)环加成和烯丙基环化之间的选择性由配体控制。无论烯丙二烯和烯烃末端取代基的性质如何,P(o-tol)配体总是有利于 C-C 还原消除,生成环己烷产物。另一方面,PBu 配体的灵活性意味着电子和空间因素起着重要作用。烯丙二烯末端取代基中的吸电子基团如 COMe 会引起明显的底物-配体排斥,并使 C-C 还原消除失稳,导致反式二烯产物生成。