Suppr超能文献

选择短睡眠时间是否可以解释人类易患阿尔茨海默病的原因?

Does selection for short sleep duration explain human vulnerability to Alzheimer's disease?

作者信息

Nesse Randolph M, Finch Caleb E, Nunn Charles L

机构信息

Arizona State University Tempe, AZ 85287,

Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089.

出版信息

Evol Med Public Health. 2017 Jan 16;2017(1):39-46. doi: 10.1093/emph/eow035.

Abstract

Compared with other primates, humans sleep less and have a much higher prevalence of Alzheimer 's disease (AD) pathology. This article reviews evidence relevant to the hypothesis that natural selection for shorter sleep time in humans has compromised the efficacy of physiological mechanisms that protect against AD during sleep. In particular, the glymphatic system drains interstitial fluid from the brain, removing extra-cellular amyloid beta (eAβ) twice as fast during sleep. In addition, melatonin - a peptide hormone that increases markedly during sleep - is an effective antioxidant that inhibits the polymerization of soluble eAβ into insoluble amyloid fibrils that are associated with AD. Sleep deprivation increases plaque formation and AD, which itself disrupts sleep, potentially creating a positive feedback cycle. These and other physiological benefits of sleep may be compromised by short sleep durations. Our hypothesis highlights possible long-term side effects of medications that reduce sleep, and may lead to potential new strategies for preventing and treating AD.

摘要

与其他灵长类动物相比,人类睡眠较少,阿尔茨海默病(AD)病理的患病率要高得多。本文回顾了与以下假设相关的证据:人类较短睡眠时间的自然选择损害了睡眠期间预防AD的生理机制的功效。特别是,类淋巴系统从大脑中排出间质液,在睡眠期间清除细胞外淀粉样β蛋白(eAβ)的速度快两倍。此外,褪黑素——一种在睡眠期间显著增加的肽类激素——是一种有效的抗氧化剂,可抑制可溶性eAβ聚合成与AD相关的不溶性淀粉样纤维。睡眠剥夺会增加斑块形成和AD,而AD本身又会扰乱睡眠, potentially creating a positive feedback cycle. These and other physiological benefits of sleep may be compromised by short sleep durations. Our hypothesis highlights possible long-term side effects of medications that reduce sleep, and may lead to potential new strategies for preventing and treating AD.

可能会形成一个正反馈循环。睡眠的这些和其他生理益处可能会因睡眠时间短而受到损害。我们的假设突出了减少睡眠的药物可能产生的长期副作用,并可能导致预防和治疗AD的潜在新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0417/5381352/148e17c73314/eow035f1p.jpg

相似文献

1
Does selection for short sleep duration explain human vulnerability to Alzheimer's disease?
Evol Med Public Health. 2017 Jan 16;2017(1):39-46. doi: 10.1093/emph/eow035.
3
The Emerging Relationship Between Interstitial Fluid-Cerebrospinal Fluid Exchange, Amyloid-β, and Sleep.
Biol Psychiatry. 2018 Feb 15;83(4):328-336. doi: 10.1016/j.biopsych.2017.11.031. Epub 2017 Dec 7.
4
Effects of growth hormone-releasing hormone on sleep and brain interstitial fluid amyloid-β in an APP transgenic mouse model.
Brain Behav Immun. 2015 Jul;47:163-71. doi: 10.1016/j.bbi.2014.09.005. Epub 2014 Sep 16.
5
The sleep-wake cycle and Alzheimer's disease: what do we know?
Neurodegener Dis Manag. 2014;4(5):351-62. doi: 10.2217/nmt.14.33.
6
Sleep disorders and Alzheimer's disease pathophysiology: The role of the Glymphatic System. A scoping review.
Mech Ageing Dev. 2024 Feb;217:111899. doi: 10.1016/j.mad.2023.111899. Epub 2023 Dec 30.
7
Melatonin and Sleep Disturbances in Alzheimer's Disease.
CNS Neurol Disord Drug Targets. 2021;20(8):736-754. doi: 10.2174/1871527320666210804155617.
8
The role of sleep deprivation and circadian rhythm disruption as risk factors of Alzheimer's disease.
Front Neuroendocrinol. 2019 Jul;54:100764. doi: 10.1016/j.yfrne.2019.100764. Epub 2019 May 15.
10
Altered dynamics of glymphatic flow in a mature-onset Tet-off APP mouse model of amyloidosis.
Alzheimers Res Ther. 2023 Jan 28;15(1):23. doi: 10.1186/s13195-023-01175-z.

引用本文的文献

1
Sleep deprivation: A risk factor for the pathogenesis and progression of Alzheimer's disease.
Heliyon. 2024 Apr 5;10(7):e28819. doi: 10.1016/j.heliyon.2024.e28819. eCollection 2024 Apr 15.
3
Live fast, die young and sleep later: Life history strategy and human sleep behavior.
Evol Med Public Health. 2020 Dec 2;9(1):36-52. doi: 10.1093/emph/eoaa048. eCollection 2021.
4
'Evolutionary medicine' perspectives on Alzheimer's Disease: Review and new directions.
Ageing Res Rev. 2018 Nov;47:140-148. doi: 10.1016/j.arr.2018.07.008. Epub 2018 Jul 27.
5
Circadian Rhythm and Alzheimer's Disease.
Med Sci (Basel). 2018 Jun 21;6(3):52. doi: 10.3390/medsci6030052.
6
The Exceptional Vulnerability of Humans to Alzheimer's Disease.
Trends Mol Med. 2017 Jun;23(6):534-545. doi: 10.1016/j.molmed.2017.04.001. Epub 2017 May 5.

本文引用的文献

1
Segmented sleep in a nonelectric, small-scale agricultural society in Madagascar.
Am J Hum Biol. 2017 Jul 8;29(4). doi: 10.1002/ajhb.22979. Epub 2017 Feb 9.
2
Potential Pathways of Abnormal Tau and α-Synuclein Dissemination in Sporadic Alzheimer's and Parkinson's Diseases.
Cold Spring Harb Perspect Biol. 2016 Nov 1;8(11):a023630. doi: 10.1101/cshperspect.a023630.
3
Apolipoprotein E and Sex Bias in Cerebrovascular Aging of Men and Mice.
Trends Neurosci. 2016 Sep;39(9):625-637. doi: 10.1016/j.tins.2016.07.002. Epub 2016 Aug 18.
4
Anti-Viral Properties of Amyloid-β Peptides.
J Alzheimers Dis. 2016 Oct 4;54(3):859-878. doi: 10.3233/JAD-160517.
5
Comparative pathobiology of β-amyloid and the unique susceptibility of humans to Alzheimer's disease.
Neurobiol Aging. 2016 Aug;44:185-196. doi: 10.1016/j.neurobiolaging.2016.04.019. Epub 2016 May 2.
6
Circadian disruption: New clinical perspective of disease pathology and basis for chronotherapeutic intervention.
Chronobiol Int. 2016;33(8):1101-19. doi: 10.1080/07420528.2016.1184678. Epub 2016 Jun 16.
8
Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders.
J Mol Med (Berl). 2016 Jul;94(7):739-46. doi: 10.1007/s00109-016-1427-y. Epub 2016 Jun 9.
9
Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease.
Sci Transl Med. 2016 May 25;8(340):340ra72. doi: 10.1126/scitranslmed.aaf1059.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验