Avanaki Ali, Espig Kathryn, Kimpe Tom
Barco Healthcare , 9125 SW Gemini Drive, Suite 200, Beaverton, Oregon 97008, United States.
Barco n. v. , Beneluxpark 21, Kortrijk 8500, Belgium.
J Med Imaging (Bellingham). 2017 Jan;4(1):015501. doi: 10.1117/1.JMI.4.1.015501. Epub 2017 Jan 12.
We specify a notion of perceived background tissue complexity (BTC) that varies with lesion shape, lesion size, and lesion location in the image. We propose four unsupervised BTC estimators based on: perceived pre and postlesion similarity of images, lesion border analysis (LBA; conspicuous lesion should be brighter than its surround), tissue anomaly detection, and local energy. The latter two are existing methods adapted for location- and lesion-dependent BTC estimation. For evaluation, we ask human observers to measure BTC (threshold visibility amplitude of a given lesion inserted) at specified locations in a mammogram. As expected, both human measured and computationally estimated BTC vary with lesion shape, size, and location. BTCs measured by different human observers are correlated ([Formula: see text]). BTC estimators are correlated to each other ([Formula: see text]) and less so to human observers ([Formula: see text]). With change in lesion shape or size, LBA estimated BTC changes in the same direction as human measured BTC. Proposed estimators can be generalized to other modalities (e.g., breast tomosynthesis) and used as-is or customized to a specific human observer, to construct BTC-aware model observers with applications, such as optimization of contrast-enhanced medical imaging systems and creation of a diversified image dataset with characteristics of a desired population.
我们定义了一种感知背景组织复杂性(BTC)的概念,其会随图像中的病变形状、病变大小和病变位置而变化。我们基于以下方面提出了四种无监督的BTC估计器:图像中病变前后的感知相似性、病变边界分析(LBA;明显的病变应比其周围区域更亮)、组织异常检测和局部能量。后两种是适用于基于位置和病变的BTC估计的现有方法。为了进行评估,我们要求人类观察者在乳腺X线照片的指定位置测量BTC(插入给定病变的阈值可见度幅度)。不出所料,人类测量的和通过计算估计的BTC均随病变形状、大小和位置而变化。不同人类观察者测量的BTC是相关的([公式:见原文])。BTC估计器彼此相关([公式:见原文]),与人类观察者的相关性则较低([公式:见原文])。随着病变形状或大小的变化,LBA估计的BTC与人类测量的BTC在相同方向上变化。所提出的估计器可以推广到其他模态(例如乳腺断层合成),并可直接使用或针对特定的人类观察者进行定制,以构建具有BTC感知能力的模型观察者,用于诸如优化对比增强医学成像系统以及创建具有所需人群特征的多样化图像数据集等应用。