Suppr超能文献

通过模拟病变的局部可检测性对临床乳房X光照片中的遮蔽进行量化。

Quantifying masking in clinical mammograms via local detectability of simulated lesions.

作者信息

Mainprize James G, Alonzo-Proulx Olivier, Jong Roberta A, Yaffe Martin J

机构信息

Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.

Department of Medical Imaging, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.

出版信息

Med Phys. 2016 Mar;43(3):1249-58. doi: 10.1118/1.4941307.

Abstract

PURPOSE

High mammographic density is known to be associated with decreased sensitivity of mammography. Recent changes in the BI-RADS density assessment address the effect of masking by densities, but the BI-RADS assessment remains qualitative and achieves only moderate agreement between radiologists. An automated, quantitative algorithm that estimates the likelihood of masking of simulated masses in a mammogram by dense tissue has been developed. The algorithm considers both the effects of loss of contrast due to density and the distracting texture or appearance of dense tissue.

METHODS

A local detectability (dL) map is created by tessellating the mammograms into overlapping regions of interest (ROIs), for which the detectability by a non-prewhitening observer is computed using local estimates of the noise power spectrum and volumetric breast density (VBD). The dL calculation was validated in a 4-alternative forced-choice observer study on the ROIs of 150 craniocaudal digital mammograms. The dL metric was compared against the inverse threshold contrast, (ΔμT)(-1) from the observer study, the anatomic noise parameter β, the radiologist's BI-RADS density category, and a validated measure of VBD (Cumulus).

RESULTS

The mean dL had a high correlation of r = 0.915 and r = 0.699 with (ΔμT)(-1) in the computerized and human observer study, respectively. In comparison, the local VBD estimate had a low correlation of 0.538 with (ΔμT)(-1). The mean dL had a correlation of 0.663, 0.835, and 0.696 with BI-RADS density, β, and Cumulus VBD, respectively.

CONCLUSIONS

The proposed dL metric may be useful in characterizing the potential for lesion masking by dense tissue. Because it uses information about the anatomic noise or tissue appearance, it is more closely linked to lesion detectability than VBD metrics.

摘要

目的

已知乳腺钼靶密度高与乳腺钼靶检查敏感性降低有关。乳腺影像报告和数据系统(BI-RADS)密度评估的近期变化解决了密度掩盖的影响问题,但BI-RADS评估仍为定性评估,放射科医生之间的一致性仅为中等。已开发出一种自动定量算法,用于估计乳腺钼靶片中致密组织对模拟肿块的掩盖可能性。该算法同时考虑了密度导致的对比度损失以及致密组织的干扰纹理或外观。

方法

通过将乳腺钼靶片细分为重叠的感兴趣区域(ROI)来创建局部可检测性(dL)图,使用噪声功率谱和乳腺体积密度(VBD)的局部估计值计算非白化观察者对这些区域的可检测性。在一项针对150幅头尾位数字乳腺钼靶片ROI的4选1强迫选择观察者研究中验证了dL计算。将dL指标与观察者研究中的反阈值对比度(ΔμT)(-1)、解剖噪声参数β、放射科医生的BI-RADS密度类别以及经过验证的VBD测量值(积云)进行比较。

结果

在计算机化和人类观察者研究中,平均dL与(ΔμT)(-1)的相关性分别为r = 0.915和r = 0.699,相关性较高。相比之下,局部VBD估计值与(ΔμT)(-1)的相关性较低,为0.538。平均dL与BI-RADS密度、β和积云VBD的相关性分别为0.663、0.835和0.696。

结论

所提出的dL指标可能有助于表征致密组织对病变的掩盖潜力。由于它使用了解剖噪声或组织外观的信息,因此与VBD指标相比,它与病变可检测性的联系更为紧密。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验