Hughes Tyler B, Swamidass S Joshua
Department of Pathology and Immunology, Washington University School of Medicine , Campus Box 8118, 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States.
Chem Res Toxicol. 2017 Feb 20;30(2):642-656. doi: 10.1021/acs.chemrestox.6b00385. Epub 2017 Feb 2.
Many adverse drug reactions are thought to be caused by electrophilically reactive drug metabolites that conjugate to nucleophilic sites within DNA and proteins, causing cancer or toxic immune responses. Quinone species, including quinone-imines, quinone-methides, and imine-methides, are electrophilic Michael acceptors that are often highly reactive and comprise over 40% of all known reactive metabolites. Quinone metabolites are created by cytochromes P450 and peroxidases. For example, cytochromes P450 oxidize acetaminophen to N-acetyl-p-benzoquinone imine, which is electrophilically reactive and covalently binds to nucleophilic sites within proteins. This reactive quinone metabolite elicits a toxic immune response when acetaminophen exceeds a safe dose. Using a deep learning approach, this study reports the first published method for predicting quinone formation: the formation of a quinone species by metabolic oxidation. We model both one- and two-step quinone formation, enabling accurate quinone formation predictions in nonobvious cases. We predict atom pairs that form quinones with an AUC accuracy of 97.6%, and we identify molecules that form quinones with 88.2% AUC. By modeling the formation of quinones, one of the most common types of reactive metabolites, our method provides a rapid screening tool for a key drug toxicity risk. The XenoSite quinone formation model is available at http://swami.wustl.edu/xenosite/p/quinone .
许多药物不良反应被认为是由具有亲电反应性的药物代谢产物引起的,这些代谢产物会与DNA和蛋白质中的亲核位点结合,从而导致癌症或毒性免疫反应。醌类物质,包括醌亚胺、醌甲基化物和亚胺甲基化物,是亲电迈克尔受体,通常具有高反应活性,占所有已知反应性代谢产物的40%以上。醌类代谢产物由细胞色素P450和过氧化物酶产生。例如,细胞色素P450将对乙酰氨基酚氧化为N - 乙酰 - 对苯醌亚胺,其具有亲电反应性并与蛋白质中的亲核位点共价结合。当对乙酰氨基酚超过安全剂量时,这种具有反应活性的醌类代谢产物会引发毒性免疫反应。本研究采用深度学习方法,报告了首个发表的预测醌形成的方法:通过代谢氧化形成醌类物质。我们对一步和两步醌形成进行建模,能够在不明显的情况下准确预测醌的形成。我们预测形成醌的原子对的AUC准确率为97.6%,并识别出形成醌的分子的AUC为88.2%。通过对最常见的反应性代谢产物类型之一醌的形成进行建模,我们的方法为关键药物毒性风险提供了一种快速筛选工具。XenoSite醌形成模型可在http://swami.wustl.edu/xenosite/p/quinone获取。