Suppr超能文献

深度学习预测药物代谢中醌类物质的形成

Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism.

作者信息

Hughes Tyler B, Swamidass S Joshua

机构信息

Department of Pathology and Immunology, Washington University School of Medicine , Campus Box 8118, 660 S. Euclid Avenue, St. Louis, Missouri 63110, United States.

出版信息

Chem Res Toxicol. 2017 Feb 20;30(2):642-656. doi: 10.1021/acs.chemrestox.6b00385. Epub 2017 Feb 2.

Abstract

Many adverse drug reactions are thought to be caused by electrophilically reactive drug metabolites that conjugate to nucleophilic sites within DNA and proteins, causing cancer or toxic immune responses. Quinone species, including quinone-imines, quinone-methides, and imine-methides, are electrophilic Michael acceptors that are often highly reactive and comprise over 40% of all known reactive metabolites. Quinone metabolites are created by cytochromes P450 and peroxidases. For example, cytochromes P450 oxidize acetaminophen to N-acetyl-p-benzoquinone imine, which is electrophilically reactive and covalently binds to nucleophilic sites within proteins. This reactive quinone metabolite elicits a toxic immune response when acetaminophen exceeds a safe dose. Using a deep learning approach, this study reports the first published method for predicting quinone formation: the formation of a quinone species by metabolic oxidation. We model both one- and two-step quinone formation, enabling accurate quinone formation predictions in nonobvious cases. We predict atom pairs that form quinones with an AUC accuracy of 97.6%, and we identify molecules that form quinones with 88.2% AUC. By modeling the formation of quinones, one of the most common types of reactive metabolites, our method provides a rapid screening tool for a key drug toxicity risk. The XenoSite quinone formation model is available at http://swami.wustl.edu/xenosite/p/quinone .

摘要

许多药物不良反应被认为是由具有亲电反应性的药物代谢产物引起的,这些代谢产物会与DNA和蛋白质中的亲核位点结合,从而导致癌症或毒性免疫反应。醌类物质,包括醌亚胺、醌甲基化物和亚胺甲基化物,是亲电迈克尔受体,通常具有高反应活性,占所有已知反应性代谢产物的40%以上。醌类代谢产物由细胞色素P450和过氧化物酶产生。例如,细胞色素P450将对乙酰氨基酚氧化为N - 乙酰 - 对苯醌亚胺,其具有亲电反应性并与蛋白质中的亲核位点共价结合。当对乙酰氨基酚超过安全剂量时,这种具有反应活性的醌类代谢产物会引发毒性免疫反应。本研究采用深度学习方法,报告了首个发表的预测醌形成的方法:通过代谢氧化形成醌类物质。我们对一步和两步醌形成进行建模,能够在不明显的情况下准确预测醌的形成。我们预测形成醌的原子对的AUC准确率为97.6%,并识别出形成醌的分子的AUC为88.2%。通过对最常见的反应性代谢产物类型之一醌的形成进行建模,我们的方法为关键药物毒性风险提供了一种快速筛选工具。XenoSite醌形成模型可在http://swami.wustl.edu/xenosite/p/quinone获取。

相似文献

1
Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism.深度学习预测药物代谢中醌类物质的形成
Chem Res Toxicol. 2017 Feb 20;30(2):642-656. doi: 10.1021/acs.chemrestox.6b00385. Epub 2017 Feb 2.
2
Modeling the Bioactivation and Subsequent Reactivity of Drugs.药物的生物活化及后续反应的建模。
Chem Res Toxicol. 2021 Feb 15;34(2):584-600. doi: 10.1021/acs.chemrestox.0c00417. Epub 2021 Jan 26.
6
Chemicals and Drugs Forming Reactive Quinone and Quinone Imine Metabolites.形成反应性醌和醌亚胺代谢物的化学物质和药物。
Chem Res Toxicol. 2019 Jan 22;32(1):1-34. doi: 10.1021/acs.chemrestox.8b00213. Epub 2018 Dec 14.

引用本文的文献

本文引用的文献

2
A simple model predicts UGT-mediated metabolism.一个简单的模型可预测尿苷二磷酸葡萄糖醛酸转移酶介导的代谢。
Bioinformatics. 2016 Oct 15;32(20):3183-3189. doi: 10.1093/bioinformatics/btw350. Epub 2016 Jun 20.
7
Extending P450 site-of-metabolism models with region-resolution data.运用区域分辨率数据扩展 P450 代谢部位模型。
Bioinformatics. 2015 Jun 15;31(12):1966-73. doi: 10.1093/bioinformatics/btv100. Epub 2015 Feb 19.
8
XenoSite server: a web-available site of metabolism prediction tool.XenoSite 服务器:一个可用的代谢预测工具网站。
Bioinformatics. 2015 Apr 1;31(7):1136-7. doi: 10.1093/bioinformatics/btu761. Epub 2014 Nov 18.
10
Predicting toxicities of reactive metabolite-positive drug candidates.预测具有反应性代谢产物阳性的药物候选物的毒性。
Annu Rev Pharmacol Toxicol. 2015;55:35-54. doi: 10.1146/annurev-pharmtox-010814-124720. Epub 2014 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验