Suppr超能文献

一个用于具有多种神经调质的神经回路的集成建模框架。

An integrated modelling framework for neural circuits with multiple neuromodulators.

作者信息

Joshi Alok, Youssofzadeh Vahab, Vemana Vinith, McGinnity T M, Prasad Girijesh, Wong-Lin KongFatt

机构信息

School of Computer Science, University of Manchester, Manchester, UK.

Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.

出版信息

J R Soc Interface. 2017 Jan;14(126). doi: 10.1098/rsif.2016.0902.

Abstract

Neuromodulators are endogenous neurochemicals that regulate biophysical and biochemical processes, which control brain function and behaviour, and are often the targets of neuropharmacological drugs. Neuromodulator effects are generally complex partly owing to the involvement of broad innervation, co-release of neuromodulators, complex intra- and extrasynaptic mechanism, existence of multiple receptor subtypes and high interconnectivity within the brain. In this work, we propose an efficient yet sufficiently realistic computational neural modelling framework to study some of these complex behaviours. Specifically, we propose a novel dynamical neural circuit model that integrates the effective neuromodulator-induced currents based on various experimental data (e.g. electrophysiology, neuropharmacology and voltammetry). The model can incorporate multiple interacting brain regions, including neuromodulator sources, simulate efficiently and easily extendable to large-scale brain models, e.g. for neuroimaging purposes. As an example, we model a network of mutually interacting neural populations in the lateral hypothalamus, dorsal raphe nucleus and locus coeruleus, which are major sources of neuromodulator orexin/hypocretin, serotonin and norepinephrine/noradrenaline, respectively, and which play significant roles in regulating many physiological functions. We demonstrate that such a model can provide predictions of systemic drug effects of the popular antidepressants (e.g. reuptake inhibitors), neuromodulator antagonists or their combinations. Finally, we developed user-friendly graphical user interface software for model simulation and visualization for both fundamental sciences and pharmacological studies.

摘要

神经调质是内源性神经化学物质,可调节生物物理和生化过程,这些过程控制着大脑功能和行为,并且常常是神经药理学药物的作用靶点。神经调质的作用通常较为复杂,部分原因在于其广泛的神经支配、神经调质的共释放、复杂的突触内和突触外机制、多种受体亚型的存在以及大脑内部的高度互连性。在这项工作中,我们提出了一个高效且足够逼真的计算神经建模框架,以研究其中一些复杂行为。具体而言,我们提出了一种新颖的动态神经回路模型,该模型基于各种实验数据(例如电生理学、神经药理学和伏安法)整合了有效的神经调质诱导电流。该模型可以纳入多个相互作用的脑区,包括神经调质来源,能够高效模拟并且易于扩展到大规模脑模型,例如用于神经成像目的。例如,我们对下丘脑外侧、中缝背核和蓝斑中相互作用的神经群体网络进行建模,这些分别是神经调质食欲素/下丘脑泌素、5-羟色胺和去甲肾上腺素/肾上腺素的主要来源,并且在调节许多生理功能中发挥着重要作用。我们证明这样的模型可以预测常用抗抑郁药(例如再摄取抑制剂)、神经调质拮抗剂或它们的组合的全身药物作用。最后,我们开发了用户友好的图形用户界面软件,用于基础科学和药理学研究的模型模拟和可视化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb7/5310738/fc5fb6b17e88/rsif20160902-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验