Suppr超能文献

使用机理模型和模拟推断支撑CD8 + T细胞控制B16肿瘤生长的调节机制的影响

Inferring the Impact of Regulatory Mechanisms that Underpin CD8+ T Cell Control of B16 Tumor Growth Using Mechanistic Models and Simulation.

作者信息

Klinke David J, Wang Qing

机构信息

Department of Chemical and Biomedical Engineering and WVU Cancer Institute, West Virginia UniversityMorgantown, WV, USA; Department of Microbiology, Immunology, and Cell Biology, West Virginia UniversityMorgantown, WV, USA.

Department of Computer Science, Mathematics and Engineering, Shepherd University Shepherdstown, WV, USA.

出版信息

Front Pharmacol. 2017 Jan 4;7:515. doi: 10.3389/fphar.2016.00515. eCollection 2016.

Abstract

A major barrier for broadening the efficacy of immunotherapies for cancer is identifying key mechanisms that limit the efficacy of tumor infiltrating lymphocytes. Yet, identifying these mechanisms using human samples and mouse models for cancer remains a challenge. While interactions between cancer and the immune system are dynamic and non-linear, identifying the relative roles that biological components play in regulating anti-tumor immunity commonly relies on human intuition alone, which can be limited by cognitive biases. To assist natural intuition, modeling and simulation play an emerging role in identifying therapeutic mechanisms. To illustrate the approach, we developed a multi-scale mechanistic model to describe the control of tumor growth by a primary response of CD8+ T cells against defined tumor antigens using the B16 C57Bl/6 mouse model for malignant melanoma. The mechanistic model was calibrated to data obtained following adenovirus-based immunization and validated to data obtained following adoptive transfer of transgenic CD8+ T cells. More importantly, we use simulation to test whether the postulated network topology, that is the modeled biological components and their associated interactions, is sufficient to capture the observed anti-tumor immune response. Given the available data, the simulation results also provided a statistical basis for quantifying the relative importance of different mechanisms that underpin CD8+ T cell control of B16F10 growth. By identifying conditions where the postulated network topology is incomplete, we illustrate how this approach can be used as part of an iterative design-build-test cycle to expand the predictive power of the model.

摘要

扩大癌症免疫疗法疗效的一个主要障碍是确定限制肿瘤浸润淋巴细胞疗效的关键机制。然而,利用人类样本和癌症小鼠模型来确定这些机制仍然是一项挑战。虽然癌症与免疫系统之间的相互作用是动态且非线性的,但确定生物成分在调节抗肿瘤免疫中所起的相对作用通常仅依靠人类直觉,而这可能会受到认知偏差的限制。为了辅助自然直觉,建模和模拟在确定治疗机制方面正发挥着越来越重要的作用。为了说明这种方法,我们开发了一个多尺度机制模型,以描述使用B16 C57Bl/6小鼠恶性黑色素瘤模型时,CD8+ T细胞对特定肿瘤抗原的初级反应对肿瘤生长的控制。该机制模型根据基于腺病毒免疫后获得的数据进行校准,并根据转基因CD8+ T细胞过继转移后获得的数据进行验证。更重要的是,我们使用模拟来测试假设的网络拓扑结构,即建模的生物成分及其相关相互作用,是否足以捕捉观察到的抗肿瘤免疫反应。根据现有数据,模拟结果还为量化支撑CD8+ T细胞控制B16F10生长的不同机制的相对重要性提供了统计依据。通过确定假设的网络拓扑结构不完整的情况,我们说明了如何将这种方法用作迭代设计-构建-测试循环的一部分,以扩大模型的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac3b/5209634/dbc1f3feeec8/fphar-07-00515-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验