Van Dijk Eline M, Culha Sule, Menzen Mark H, Bidan Cécile M, Gosens Reinoud
Department of Molecular Pharmacology, University of GroningenGroningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of GroningenGroningen, Netherlands.
Université Grenoble Alpes, Centre National de la Recherche Scientifique, LIPhy Grenoble, France.
Front Physiol. 2017 Jan 4;7:657. doi: 10.3389/fphys.2016.00657. eCollection 2016.
COPD is a progressive lung disease characterized by emphysema and enhanced bronchoconstriction. Current treatments focused on bronchodilation can delay disease progression to some extent, but recovery or normalization of loss of lung function is impossible. Therefore, novel therapeutic targets are needed. The importance of the parenchyma in airway narrowing is increasingly recognized. In COPD, the parenchyma and extracellular matrix are altered, possibly affecting airway mechanics and enhancing bronchoconstriction. Our aim was to set up a comprehensive Precision Cut Lung Slice (PCLS) model with a pathophysiology resembling that of COPD and integrate multiple readouts in order to study the relationship between parenchyma, airway functionality, and lung repair processes. Lungs of C57Bl/6J mice were sliced and treated with elastase (2.5 μg/ml) or HO (200 μM) for 16 h. Following treatment, parenchymal structure, airway narrowing, and gene expression levels of alveolar Type I and II cell repair were assessed. Following elastase, but not HO treatment, slices showed a significant increase in mean linear intercept (Lmi), reflective of emphysema. Only elastase-treated slices showed disorganization of elastin and collagen fibers. In addition, elastase treatment lowered both alveolar Type I and II marker expression, whereas HO stimulation lowered alveolar Type I marker expression only. Furthermore, elastase-treated slices showed enhanced methacholine-induced airway narrowing as reflected by increased pEC50 (5.87 at basal vs. 6.50 after elastase treatment) and Emax values (47.96 vs. 67.30%), and impaired chloroquine-induced airway opening. The increase in pEC50 correlated with an increase in mean Lmi. Using this model, we show that structural disruption of elastin fibers leads to impaired alveolar repair, disruption of the parenchymal compartment, and altered airway biomechanics, enhancing airway contraction. This finding may have implications for COPD, as the amount of elastin fiber and parenchymal tissue disruption is associated with disease severity. Therefore, we suggest that PCLS can be used to model certain aspects of COPD pathophysiology and that the parenchymal tissue damage observed in COPD contributes to lung function decline by disrupting airway biomechanics. Targeting the parenchymal compartment may therefore be a promising therapeutic target in the treatment of COPD.
慢性阻塞性肺疾病(COPD)是一种以肺气肿和支气管收缩增强为特征的进行性肺部疾病。目前针对支气管扩张的治疗方法在一定程度上可以延缓疾病进展,但肺功能丧失无法恢复或正常化。因此,需要新的治疗靶点。实质组织在气道狭窄中的重要性日益受到认可。在COPD中,实质组织和细胞外基质发生改变,可能影响气道力学并增强支气管收缩。我们的目的是建立一个病理生理学类似于COPD的综合精密肺切片(PCLS)模型,并整合多个读数,以研究实质组织、气道功能和肺修复过程之间的关系。将C57Bl/6J小鼠的肺切片,用弹性蛋白酶(2.5μg/ml)或血红素加氧酶(HO,200μM)处理16小时。处理后,评估实质结构、气道狭窄以及肺泡I型和II型细胞修复的基因表达水平。弹性蛋白酶处理后(而非HO处理后),切片的平均线性截距(Lmi)显著增加,这反映了肺气肿。只有弹性蛋白酶处理的切片显示弹性蛋白和胶原纤维紊乱。此外,弹性蛋白酶处理降低了肺泡I型和II型标志物的表达,而HO刺激仅降低了肺泡I型标志物的表达。此外,弹性蛋白酶处理的切片显示,如pEC50增加(基础值为5.87,弹性蛋白酶处理后为6.50)和Emax值增加(47.96%对67.30%)所反映的,乙酰甲胆碱诱导的气道狭窄增强,以及氯喹诱导的气道开放受损。pEC50的增加与平均Lmi的增加相关。使用该模型,我们表明弹性纤维的结构破坏导致肺泡修复受损、实质隔室破坏以及气道生物力学改变,增强气道收缩。这一发现可能对COPD有影响,因为弹性纤维和实质组织破坏的程度与疾病严重程度相关。因此,我们建议PCLS可用于模拟COPD病理生理学的某些方面,并且在COPD中观察到的实质组织损伤通过破坏气道生物力学导致肺功能下降。因此,针对实质隔室可能是治疗COPD的一个有前景的治疗靶点。