Hudecek Michael, Gogishvili Tea, Monjezi Razieh, Wegner Julia, Shankar Ram, Kruesemann Christa, Miskey Csaba, Ivics Zoltán, Schmeer Marco, Schleef Martin
Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany.
PlasmidFactory, Bielefeld, Germany.
Recent Results Cancer Res. 2016;209:37-50. doi: 10.1007/978-3-319-42934-2_3.
Plasmid DNA is being used as a pharmaceutical agent in vaccination, as well as a basic substance and starting material in gene and cell therapy, and viral vector production. Since the uncontrolled expression of backbone sequences present in such plasmids and the dissemination of antibiotic resistance genes may have profound detrimental effects, an important goal in vector development was to produce supercoiled DNA lacking bacterial backbone sequences: Minicircle (MC) DNA. The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform enabling a close-to-random profile of genomic integration. In combination, the MC platform greatly enhances SB transposition and transgene integration resulting in higher numbers of stably modified target cells. We have recently developed a strategy for MC-based SB transposition of chimeric antigen receptor (CAR) transgenes that enable improved transposition rates compared to conventional plasmids and rapid manufacturing of therapeutic CAR T cell doses (Monjezi et al. 2016). This advance enables manufacturing CAR T cells in a virus-free process that relies on SB-mediated transposition from MC DNA to accomplish gene-transfer. Advantages of this approach include a strong safety profile due to the nature of the MC itself and the genomic insertion pattern of MC-derived CAR transposons. In addition, stable transposition and high-level CAR transgene expression, as well as easy and reproducible handling, make MCs a preferred vector source for gene-transfer in advanced cellular and gene therapy. In this chapter, we will review our experience in MC-based CAR T cell engineering and discuss our recent advances in MC manufacturing to accelerate both pre-clinical and clinical implementation.
质粒DNA正被用作疫苗接种中的药物制剂,以及基因和细胞治疗及病毒载体生产中的基础物质和起始材料。由于此类质粒中存在的骨架序列的失控表达以及抗生素抗性基因的传播可能产生深远的有害影响,载体开发的一个重要目标是生产缺乏细菌骨架序列的超螺旋DNA:微环(MC)DNA。睡美人(SB)转座子系统是一种非病毒基因递送平台,能够实现近乎随机的基因组整合图谱。结合使用时,MC平台可大大增强SB转座和转基因整合,从而产生更多数量的稳定修饰靶细胞。我们最近开发了一种基于MC的嵌合抗原受体(CAR)转基因SB转座策略,与传统质粒相比,该策略能够提高转座率,并能快速生产治疗性CAR T细胞剂量(Monjezi等人,2016年)。这一进展使得能够在无病毒过程中生产CAR T细胞,该过程依赖于SB介导的从MC DNA的转座来完成基因转移。这种方法的优点包括由于MC本身的性质以及源自MC的CAR转座子的基因组插入模式而具有很强的安全性。此外,稳定的转座和高水平的CAR转基因表达,以及易于操作和可重复性,使MC成为先进细胞和基因治疗中基因转移的首选载体来源。在本章中,我们将回顾我们在基于MC的CAR T细胞工程方面的经验,并讨论我们在MC生产方面的最新进展,以加速临床前和临床应用。