Suppr超能文献

糖尿病肾病小鼠模型中一氧化氮增强的直接观察

Direct Observation of Enhanced Nitric Oxide in a Murine Model of Diabetic Nephropathy.

作者信息

Boels Margien G S, van Faassen Ernst E H, Avramut M Cristina, van der Vlag Johan, van den Berg Bernard M, Rabelink Ton J

机构信息

Einthoven Laboratory for Experimental Vascular Medicine, Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, The Netherlands.

Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

PLoS One. 2017 Jan 19;12(1):e0170065. doi: 10.1371/journal.pone.0170065. eCollection 2017.

Abstract

Uncoupling of nitric oxide synthase (NOS) secondary to redox signaling is a central mechanism in endothelial and macrophage activation. To date studies on the production of nitric oxide (NO) during the development of diabetic complications show paradoxical results. We previously showed that recoupling eNOS by increasing the eNOS cofactor tetrahydrobiopterin (BH4) could restore endothelial function and prevent kidney injury in experimental kidney transplantation. Here, we employed a diabetic mouse model to investigate the effects of diabetes on renal tissue NO bioavailability. For this, we used in vivo NO trapping, followed by electron paramagnetic resonance spectroscopy. In addition, we investigated whether coupling of NOS by supplying the cofactor BH4 could restore glomerular endothelial barrier function. Our data show that overall NO availability at the tissue level is not reduced sixteen weeks after the induction of diabetes in apoE knockout mice, despite the presence of factors that cause endothelial dysfunction, and the presence of the endogenous NOS inhibitor ADMA. Targeting uncoupled NOS with the BH4 precursor sepiapterin further increases NO availability, but did not modify renal glomerular injury. Notably, glomerular heparanase activity as a driver for loss of glomerular barrier function was not reduced, pointing towards NOS-independent mechanisms. This was confirmed by unaltered increased glomerular presence of cathepsin L, the protease that activates heparanase.

摘要

一氧化氮合酶(NOS)因氧化还原信号而解偶联是内皮细胞和巨噬细胞激活的核心机制。迄今为止,关于糖尿病并发症发展过程中一氧化氮(NO)产生的研究结果相互矛盾。我们之前表明,通过增加eNOS辅因子四氢生物蝶呤(BH4)来使eNOS重新偶联,可以恢复内皮功能并预防实验性肾移植中的肾损伤。在此,我们采用糖尿病小鼠模型来研究糖尿病对肾组织中NO生物利用度的影响。为此,我们使用体内NO捕获技术,随后进行电子顺磁共振波谱分析。此外,我们研究了通过提供辅因子BH4使NOS偶联是否能够恢复肾小球内皮屏障功能。我们的数据表明,在apoE基因敲除小鼠中诱导糖尿病16周后,尽管存在导致内皮功能障碍的因素以及内源性NOS抑制剂非对称二甲基精氨酸(ADMA),但组织水平的总体NO可用性并未降低。用BH4前体蝶哌嗪靶向未偶联的NOS可进一步提高NO可用性,但并未改善肾小球损伤。值得注意的是,作为肾小球屏障功能丧失驱动因素的肾小球乙酰肝素酶活性并未降低,这表明存在不依赖于NOS的机制。激活乙酰肝素酶的蛋白酶组织蛋白酶L在肾小球中的含量增加未改变,这证实了上述观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6d8/5245862/8077ae72e9e4/pone.0170065.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验