Okuyama Masayuki, Matsunaga Kana, Watanabe Ken-Ichi, Yamashita Keitaro, Tagami Takayoshi, Kikuchi Asako, Ma Min, Klahan Patcharapa, Mori Haruhide, Yao Min, Kimura Atsuo
Laboratory of Molecular Enzymology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
Laboratory of X-ray Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
FEBS J. 2017 Mar;284(5):766-783. doi: 10.1111/febs.14018. Epub 2017 Feb 8.
UNLABELLED: The preparation of a glycosynthase, a catalytic nucleophile mutant of a glycosidase, is a well-established strategy for the effective synthesis of glycosidic linkages. However, glycosynthases derived from α-glycosidases can give poor yields of desired products because they require generally unstable β-glycosyl fluoride donors. Here, we investigate a transglycosylation catalyzed by a catalytic nucleophile mutant derived from a glycoside hydrolase family (GH) 97 α-galactosidase, using more stable β-galactosyl azide and α-galactosyl fluoride donors. The mutant enzyme catalyzes the glycosynthase reaction using β-galactosyl azide and α-galactosyl transfer from α-galactosyl fluoride with assistance of external anions. Formate was more effective at restoring transfer activity than azide. Kinetic analysis suggests that poor transglycosylation in the presence of the azide is because of low activity of the ternary complex between enzyme, β-galactosyl azide and acceptor. A three-dimensional structure of the mutant enzyme in complex with the transglycosylation product, β-lactosyl α-d-galactoside, was solved to elucidate the ligand-binding aspects of the α-galactosidase. Subtle differences at the β→α loops 1, 2 and 3 of the catalytic TIM barrel of the α-galactosidase from those of a homologous GH97 α-glucoside hydrolase seem to be involved in substrate recognitions. In particular, the Trp residues in β→α loop 1 have separate roles. Trp312 of the α-galactosidase appears to exclude the equatorial hydroxy group at C4 of glucosides, whereas the corresponding Trp residue in the α-glucoside hydrolase makes a hydrogen bond with this hydroxy group. The mechanism of α-galactoside recognition is conserved among GH27, 31, 36 and 97 α-galactosidases. DATABASE: The atomic coordinates (code: 5E1Q) have been deposited in the Protein Data Bank.
未标记:制备糖基合成酶,即糖苷酶的催化亲核突变体,是有效合成糖苷键的一种成熟策略。然而,源自α-糖苷酶的糖基合成酶可能会使所需产物的产率较低,因为它们通常需要不稳定的β-糖基氟供体。在此,我们研究了由糖苷水解酶家族(GH)97α-半乳糖苷酶衍生的催化亲核突变体催化的转糖基化反应,使用了更稳定的β-半乳糖基叠氮化物和α-半乳糖基氟供体。该突变酶在外部阴离子的辅助下,使用β-半乳糖基叠氮化物催化糖基合成酶反应,并从α-半乳糖基氟转移α-半乳糖基。甲酸盐在恢复转移活性方面比叠氮化物更有效。动力学分析表明,在叠氮化物存在下转糖基化效果不佳是由于酶、β-半乳糖基叠氮化物和受体之间的三元复合物活性较低。解析了与转糖基化产物β-乳糖基α-d-半乳糖苷复合的突变酶的三维结构,以阐明α-半乳糖苷酶的配体结合情况。α-半乳糖苷酶催化TIM桶的β→α环1、2和3与同源GH97α-葡萄糖苷水解酶的相应环存在细微差异,似乎参与了底物识别。特别是,β→α环1中的色氨酸残基具有不同的作用。α-半乳糖苷酶的Trp312似乎排除了糖苷C4处的赤道羟基,而α-葡萄糖苷水解酶中的相应色氨酸残基与该羟基形成氢键。GH27、31、36和97α-半乳糖苷酶之间α-半乳糖苷识别机制是保守的。 数据库:原子坐标(代码:5E1Q)已存入蛋白质数据库。
Arch Biochem Biophys. 2021-7-30
Glycobiology. 2017-5-1
J Biol Chem. 2025-4
bioRxiv. 2024-5-23
Molecules. 2017-8-30