Gutierrez-Castellanos Nicolas, Da Silva-Matos Carla M, Zhou Kuikui, Canto Cathrin B, Renner Maria C, Koene Linda M C, Ozyildirim Ozgecan, Sprengel Rolf, Kessels Helmut W, De Zeeuw Chris I
Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus MC Rotterdam, 3015 GE Rotterdam, the Netherlands.
Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Cerebellar Coordination and Cognition Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands.
Neuron. 2017 Jan 18;93(2):409-424. doi: 10.1016/j.neuron.2016.11.046.
Accumulating evidence indicates that cerebellar long-term potentiation (LTP) is necessary for procedural learning. However, little is known about its underlying molecular mechanisms. Whereas AMPA receptor (AMPAR) subunit rules for synaptic plasticity have been extensively studied in relation to declarative learning, it is unclear whether these rules apply to cerebellum-dependent motor learning. Here we show that LTP at the parallel-fiber-to-Purkinje-cell synapse and adaptation of the vestibulo-ocular reflex depend not on GluA1- but on GluA3-containing AMPARs. In contrast to the classic form of LTP implicated in declarative memory formation, this form of LTP does not require GluA1-AMPAR trafficking but rather requires changes in open-channel probability of GluA3-AMPARs mediated by cAMP signaling and activation of the protein directly activated by cAMP (Epac). We conclude that vestibulo-cerebellar motor learning is the first form of memory acquisition shown to depend on GluA3-dependent synaptic potentiation by increasing single-channel conductance.
越来越多的证据表明,小脑长时程增强(LTP)对于程序性学习是必要的。然而,其潜在的分子机制却鲜为人知。虽然在陈述性学习方面,关于AMPA受体(AMPAR)亚基在突触可塑性中的作用规则已得到广泛研究,但这些规则是否适用于小脑依赖的运动学习尚不清楚。在此,我们表明平行纤维到浦肯野细胞突触处的LTP以及前庭眼反射的适应性并不依赖于含GluA1的AMPAR,而是依赖于含GluA3的AMPAR。与参与陈述性记忆形成的经典LTP形式不同,这种LTP形式不需要GluA1-AMPAR的转运,而是需要由cAMP信号传导和cAMP直接激活的蛋白(Epac)激活介导的GluA3-AMPAR开放通道概率的变化。我们得出结论,前庭小脑运动学习是第一种被证明通过增加单通道电导而依赖于GluA3依赖性突触增强的记忆获取形式。