Suppr超能文献

倾向评分法与协变量调整的比较:4 项心血管研究中的评估。

Comparison of Propensity Score Methods and Covariate Adjustment: Evaluation in 4 Cardiovascular Studies.

机构信息

Department of Biostatistics, London School of Hygiene and Tropical Medicine, London, United Kingdom; Innovative Pediatric Oncology Drug Development, F. Hoffmann-La Roche AG, Basel, Switzerland.

Department of Biostatistics, London School of Hygiene and Tropical Medicine, London, United Kingdom.

出版信息

J Am Coll Cardiol. 2017 Jan 24;69(3):345-357. doi: 10.1016/j.jacc.2016.10.060.

Abstract

Propensity scores (PS) are an increasingly popular method to adjust for confounding in observational studies. Propensity score methods have theoretical advantages over conventional covariate adjustment, but their relative performance in real-word scenarios is poorly characterized. We used datasets from 4 large-scale cardiovascular observational studies (PROMETHEUS, ADAPT-DES [the Assessment of Dual AntiPlatelet Therapy with Drug-Eluting Stents], THIN [The Health Improvement Network], and CHARM [Candesartan in Heart Failure-Assessment of Reduction in Mortality and Morbidity]) to compare the performance of conventional covariate adjustment with 4 common PS methods: matching, stratification, inverse probability weighting, and use of PS as a covariate. We found that stratification performed poorly with few outcome events, and inverse probability weighting gave imprecise estimates of treatment effect and undue influence to a small number of observations when substantial confounding was present. Covariate adjustment and matching performed well in all of our examples, although matching tended to give less precise estimates in some cases. PS methods are not necessarily superior to conventional covariate adjustment, and care should be taken to select the most suitable method.

摘要

倾向评分(PS)是一种在观察性研究中调整混杂因素的越来越流行的方法。倾向评分方法在理论上优于传统的协变量调整,但它们在实际情况下的相对性能描述不足。我们使用了来自 4 项大规模心血管观察性研究(PROMETHEUS、ADAPT-DES [药物洗脱支架双联抗血小板治疗评估]、THIN [健康改进网络]和 CHARM [坎地沙坦治疗心力衰竭降低死亡率和发病率评估])的数据集,比较了传统协变量调整与 4 种常见 PS 方法(匹配、分层、逆概率加权和将 PS 用作协变量)的性能。我们发现,分层在结局事件较少的情况下表现不佳,而当存在大量混杂因素时,逆概率加权会对少数观察值产生不精确的治疗效果估计和不当影响。在我们的所有示例中,协变量调整和匹配都表现良好,尽管在某些情况下匹配往往会给出不太精确的估计。PS 方法不一定优于传统的协变量调整,应谨慎选择最合适的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验