Center for Mathematical and Data Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
BMC Med Res Methodol. 2024 Oct 3;24(1):228. doi: 10.1186/s12874-024-02350-y.
Propensity scores (PS) are typically evaluated using balance metrics that focus on covariate balance, often without considering their predictive power for the outcome. This approach may not always result in optimal bias reduction in the treatment effect estimate. To address this issue, evaluating covariate balance through prognostic scores, which account for the relationship between covariates and the outcome, has been proposed. Similarly, using a typical model averaging approach for PS estimation that minimizes prediction error for treatment status and covariate imbalance does not necessarily optimize PS-based confounding adjustment. As an alternative approach, using the averaged PS model that minimizes inter-group differences in the prognostic score may further reduce bias in the treatment effect estimate. Moreover, since the prognostic score is also an estimated quantity, model averaging in the prognostic scores can help identify a better prognostic score model. Utilizing the model-averaged prognostic scores as the balance metric for constructing the averaged PS model can contribute to further decreasing bias in treatment effect estimates. This paper demonstrates the effectiveness of the PS model averaging approach based on prognostic score balance and proposes a method that uses the model-averaged prognostic score as a balance metric, evaluating its performance through simulations and empirical analysis.
We conduct a series of simulations alongside an analysis of empirical observational data to compare the performances of weighted treatment effect estimates using the proposed and existing approaches. In our examination, we separately provid four candidate estimates for the PS and prognostic score models using traditional regression and machine learning methods. The model averaging of PS based on these candidate estimators is performed to either maximize the prediction accuracy of the treatment or to minimize intergroup differences in covariate distributions or prognostic scores. We also utilize not only the prognostic scores from each candidate model but also an averaged score that best predicted the outcome, for the balance assessment.
The simulation and empirical data analysis reveal that our proposed model-averaging approaches for PS estimation consistently yield lower bias and less variability in treatment effect estimates across various scenarios compared to existing methods. Specifically, using the optimally averaged prognostic scores as a balance metric significantly improves the robustness of the weighted treatment effect estimates.
The prognostic score-based model averaging approach for estimating PS can outperform existing model averaging methods. In particular, the estimator using the model averaging prognostic score as a balance metric can produce more robust estimates. Since our results are obtained under relatively simple conditions, applying them to real data analysis requires adjustments to obtain accurate estimates according to the complexity and dimensionality of the data.
Using the prognostic score as the balance metric for the PS model averaging enhances the performance of the treatment effect estimator, which can be recommended for a wide variety of situations. When applying the proposed method to real-world data, it is important to use it in conjunction with techniques that mitigate issues arising from the complexity and high dimensionality of the data.
倾向评分(PS)通常使用侧重于协变量平衡的平衡指标进行评估,而这些指标通常不考虑其对结果的预测能力。这种方法并不总是能在治疗效果估计中实现最优的偏差减少。为了解决这个问题,已经提出了通过预后评分来评估协变量平衡,该评分考虑了协变量与结果之间的关系。同样,使用一种典型的模型平均方法来估计 PS,该方法最小化了治疗状态和协变量不平衡的预测误差,但不一定能优化基于 PS 的混杂调整。作为一种替代方法,使用最小化预后评分中组间差异的平均 PS 模型可能会进一步降低治疗效果估计的偏差。此外,由于预后评分也是一个估计量,因此在预后评分中进行模型平均可以帮助确定更好的预后评分模型。使用平均 PS 模型作为构建平均 PS 模型的平衡指标,可以进一步降低治疗效果估计的偏差。本文展示了基于预后评分平衡的 PS 模型平均方法的有效性,并提出了一种使用模型平均预后评分作为平衡指标的方法,通过模拟和实证分析来评估其性能。
我们进行了一系列模拟,并对实证观察数据进行了分析,以比较使用所提出的方法和现有方法的加权治疗效果估计的性能。在我们的检查中,我们分别使用传统回归和机器学习方法为 PS 和预后评分模型提供了四个候选估计。基于这些候选估计器对 PS 进行模型平均,以最大化治疗的预测准确性,或者最小化组间差异在协变量分布或预后评分。我们还使用了不仅来自每个候选模型的预后评分,而且还使用了最佳预测结果的平均评分,用于平衡评估。
模拟和实证数据分析表明,与现有方法相比,我们提出的 PS 估计的模型平均方法在各种情况下都能产生更低的偏差和更小的治疗效果估计的变异性。具体来说,使用最佳平均预后评分作为平衡指标可以显著提高加权治疗效果估计的稳健性。
基于预后评分的 PS 模型平均方法可以优于现有模型平均方法。特别是,使用模型平均预后评分作为平衡指标的估计器可以产生更稳健的估计值。由于我们的结果是在相对简单的条件下获得的,因此将其应用于实际数据分析需要根据数据的复杂性和维度进行调整,以获得准确的估计值。
使用预后评分作为 PS 模型平均的平衡指标可以提高治疗效果估计器的性能,因此可以推荐在各种情况下使用。在将所提出的方法应用于实际数据时,重要的是结合用于缓解数据复杂性和高维度问题的技术一起使用。