Azaceta Eneko, Lutz Lukas, Grimaud Alexis, Vicent-Luna Jose Manuel, Hamad Said, Yate Luis, Cabañero German, Grande Hans-Jurgen, Anta Juan A, Tarascon Jean-Marie, Tena-Zaera Ramon
Nanomaterials Unit, IK4-Cidetec, Paseo Miramon 196, 20009, Donostia-SanSebastián, Spain.
Chemistry of Materials and Energy, College de France, Place Marcelin Berthelot 11, 75005, Paris, France.
ChemSusChem. 2017 Apr 10;10(7):1616-1623. doi: 10.1002/cssc.201601464. Epub 2017 Mar 14.
Metal-air batteries are intensively studied because of their high theoretical energy-storage capability. However, the fundamental science of electrodes, electrolytes, and reaction products still needs to be better understood. In this work, the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was chosen to study the influence of a wide range of metal cations (M ) on the electrochemical behavior of oxygen. The relevance of the theory of Lewis hard and soft acids and bases to predict satisfactorily the reduction potential of oxygen in electrolytes containing metal cations is demonstrated. Systems with soft and intermediate M acidity are shown to facilitate oxygen reduction and metal oxide formation, whereas oxygen reduction is hampered by hard acid cations such as sodium and lithium. Furthermore, DFT calculations on the energy of formation of the resulting metal oxides rationalize the effect of M on oxygen reduction. A case study on the Na-O system is described in detail. Among other things, the Na concentration of the electrolyte is shown to control the electrochemical pathway (solution precipitation vs. surface deposition) by which the discharge product grows. All in all, fundamental insights for the design of advanced electrolytes for metal-air batteries, and Na-air batteries in particular, are provided.
金属空气电池因其高理论储能能力而受到广泛研究。然而,电极、电解质和反应产物的基础科学仍需深入理解。在这项工作中,选择离子液体N-丁基-N-甲基吡咯烷双(三氟甲磺酰)亚胺(PYR14TFSI)来研究多种金属阳离子(M)对氧电化学行为的影响。证明了路易斯软硬酸碱理论在令人满意地预测含金属阳离子电解质中氧还原电位方面的相关性。具有软酸性和中等酸性的M的体系显示出促进氧还原和金属氧化物形成,而氧还原受到硬酸阳离子如钠和锂的阻碍。此外,对所得金属氧化物形成能的密度泛函理论计算解释了M对氧还原的影响。详细描述了Na-O体系的案例研究。其中,电解质的Na浓度显示出控制放电产物生长的电化学途径(溶液沉淀与表面沉积)。总而言之,为金属空气电池,特别是钠空气电池的先进电解质设计提供了基础见解。