Suppr超能文献

多模态笼型介孔二氧化硅的Frank-Kasper型方形-三角形平铺中的缺陷结构。

Defect structures in Frank-Kasper type square-triangle tiling of multimodal cage-type mesoporous silicas.

作者信息

Sakamoto Yasuhiro

机构信息

PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.

出版信息

J Phys Condens Matter. 2017 Mar 29;29(12):124002. doi: 10.1088/1361-648X/aa5b02. Epub 2017 Jan 20.

Abstract

Multimodal cage-type mesoporous silicas (MCMSs) with Frank-Kasper type square-triangle tiling show a unique defect structure, so-called three-fold symmetric hexagons, or shields, which are caused by phason fluctuations in dodecagonal quasicrystals. We observed and characterized three types of configurations inside shields in both quasiperiodic and periodic 3.4.3.4 tiling of MCMSs by transmission electron microscopy (TEM). The high-resolution TEM images of the shields were well explained by polyhedral models, which are the constituents of the Frank-Kasper type tetrahedrally close-packed structures of MCMSs. Shield defects invariably formed because of mismatch in periodic and/or aperiodic square-triangle tiling, and they were also catalyzed by other defects. Multiple shields overlapped with sharing of 30° rhombus units and showed characteristic motifs in the tiling, such as defect-mediated 12-fold wheel and stripe bundle arrangements. Hence, MCMSs with square-triangle tiling would be governed by a random-tiling-like structure stabilized by entropy rather than energy, which results in defect-free tiling.

摘要

具有Frank-Kasper型方形-三角形平铺的多模态笼型介孔二氧化硅(MCMSs)呈现出独特的缺陷结构,即所谓的三重对称六边形或屏蔽,这是由十二边形准晶中的相涨落引起的。我们通过透射电子显微镜(TEM)观察并表征了MCMSs在准周期和周期3.4.3.4平铺中屏蔽内部的三种构型。屏蔽的高分辨率TEM图像可以通过多面体模型得到很好的解释,这些多面体模型是MCMSs的Frank-Kasper型四面体密堆积结构的组成部分。屏蔽缺陷总是由于周期性和/或非周期性方形-三角形平铺中的不匹配而形成,并且它们也会被其他缺陷催化。多个屏蔽通过共享30°菱形单元重叠,并在平铺中显示出特征图案,如缺陷介导的12重轮状和条纹束排列。因此,具有方形-三角形平铺的MCMSs将由一种类似随机平铺的结构所支配,这种结构由熵而非能量稳定,从而导致无缺陷平铺。

相似文献

1
Defect structures in Frank-Kasper type square-triangle tiling of multimodal cage-type mesoporous silicas.
J Phys Condens Matter. 2017 Mar 29;29(12):124002. doi: 10.1088/1361-648X/aa5b02. Epub 2017 Jan 20.
2
Nearly Ideal Random Tiling with Dodecagonal Symmetry from Pentablock Quarterpolymers of the ABCBD Type.
ACS Nano. 2024 Jul 2;18(26):17135-17144. doi: 10.1021/acsnano.4c03782. Epub 2024 Jun 19.
3
Direct AFM observation of individual micelles, tile decorations and tiling rules of a dodecagonal liquid quasicrystal.
J Phys Condens Matter. 2017 Oct 18;29(41):414001. doi: 10.1088/1361-648X/aa818a. Epub 2017 Jul 24.
4
On the formation of stripe, sigma, and honeycomb phases in a core-corona system.
Soft Matter. 2017 Jun 28;13(25):4418-4432. doi: 10.1039/c7sm00254h.
5
Dodecagonal tiling in mesoporous silica.
Nature. 2012 Jul 18;487(7407):349-53. doi: 10.1038/nature11230.
6
The Largest Quasicrystalline Tiling with Dodecagonal Symmetry from a Single Pentablock Quarterpolymer of the ABCBD Type.
ACS Nano. 2022 Apr 26;16(4):6111-6117. doi: 10.1021/acsnano.1c11599. Epub 2022 Mar 22.
7
Frank-Kasper, quasicrystalline and related phases in liquid crystals.
Soft Matter. 2005 Jun 27;1(2):95-106. doi: 10.1039/b502443a.
8
A columnar liquid quasicrystal with a honeycomb structure that consists of triangular, square and trapezoidal cells.
Nat Chem. 2023 May;15(5):625-632. doi: 10.1038/s41557-023-01166-5. Epub 2023 Mar 23.
9
Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers.
Phys Rev Lett. 2007 May 11;98(19):195502. doi: 10.1103/PhysRevLett.98.195502. Epub 2007 May 8.
10
Space fullerenes: a computer search for new Frank-Kasper structures.
Acta Crystallogr A. 2010 Sep;66(Pt 5):602-15. doi: 10.1107/S0108767310022932. Epub 2010 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验