Suppr超能文献

一种用于水下传感器网络中事件K覆盖的分布式节能算法。

A Distributed and Energy-Efficient Algorithm for Event K-Coverage in Underwater Sensor Networks.

作者信息

Jiang Peng, Xu Yiming, Liu Jun

机构信息

College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2017 Jan 19;17(1):186. doi: 10.3390/s17010186.

Abstract

For event dynamic K-coverage algorithms, each management node selects its assistant node by using a greedy algorithm without considering the residual energy and situations in which a node is selected by several events. This approach affects network energy consumption and balance. Therefore, this study proposes a distributed and energy-efficient event K-coverage algorithm (DEEKA). After the network achieves 1-coverage, the nodes that detect the same event compete for the event management node with the number of candidate nodes and the average residual energy, as well as the distance to the event. Second, each management node estimates the probability of its neighbor nodes' being selected by the event it manages with the distance level, the residual energy level, and the number of dynamic coverage event of these nodes. Third, each management node establishes an optimization model that uses expectation energy consumption and the residual energy variance of its neighbor nodes and detects the performance of the events it manages as targets. Finally, each management node uses a constrained non-dominated sorting genetic algorithm (NSGA-II) to obtain the Pareto set of the model and the best strategy via technique for order preference by similarity to an ideal solution (TOPSIS). The algorithm first considers the effect of harsh underwater environments on information collection and transmission. It also considers the residual energy of a node and a situation in which the node is selected by several other events. Simulation results show that, unlike the on-demand variable sensing K-coverage algorithm, DEEKA balances and reduces network energy consumption, thereby prolonging the network's best service quality and lifetime.

摘要

对于事件动态K覆盖算法,每个管理节点通过使用贪婪算法来选择其辅助节点,而不考虑剩余能量以及一个节点被多个事件选中的情况。这种方法会影响网络能耗和平衡。因此,本研究提出了一种分布式节能事件K覆盖算法(DEEKA)。在网络实现1覆盖后,检测到同一事件的节点通过候选节点数量、平均剩余能量以及到事件的距离来竞争事件管理节点。其次,每个管理节点根据其邻居节点的距离级别、剩余能量级别以及这些节点的动态覆盖事件数量,估计其邻居节点被其管理的事件选中的概率。第三,每个管理节点建立一个优化模型,该模型以期望能耗和其邻居节点的剩余能量方差为目标,并检测其管理的事件的性能。最后,每个管理节点使用约束非支配排序遗传算法(NSGA-II)通过逼近理想解排序法(TOPSIS)来获得模型的帕累托集和最佳策略。该算法首先考虑了恶劣水下环境对信息收集和传输的影响。它还考虑了节点的剩余能量以及一个节点被其他多个事件选中的情况。仿真结果表明,与按需可变感知K覆盖算法不同,DEEKA平衡并降低了网络能耗,从而延长了网络的最佳服务质量和寿命。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b799/5298759/701b14acfa72/sensors-17-00186-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验