Suppr超能文献

利用乳腺癌风险相关多态性来识别适合乳腺癌化学预防的女性。

Using Breast Cancer Risk Associated Polymorphisms to Identify Women for Breast Cancer Chemoprevention.

作者信息

Ziv Elad, Tice Jeffrey A, Sprague Brian, Vachon Celine M, Cummings Steven R, Kerlikowske Karla

机构信息

Department of Medicine, University of California, San Francisco, California, United States of America.

Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States of America.

出版信息

PLoS One. 2017 Jan 20;12(1):e0168601. doi: 10.1371/journal.pone.0168601. eCollection 2017.

Abstract

BACKGROUND

Breast cancer can be prevented with selective estrogen receptor modifiers (SERMs) and aromatase inhibitors (AIs). The US Preventive Services Task Force recommends that women with a 5-year breast cancer risk ≥3% consider chemoprevention for breast cancer. More than 70 single nucleotide polymorphisms (SNPs) have been associated with breast cancer. We sought to determine how to best integrate risk information from SNPs with other risk factors to risk stratify women for chemoprevention.

METHODS

We used the risk distribution among women ages 35-69 estimated by the Breast Cancer Surveillance Consortium (BCSC) risk model. We modeled the effect of adding 70 SNPs to the BCSC model and examined how this would affect how many women are reclassified above and below the threshold for chemoprevention.

RESULTS

We found that most of the benefit of SNP testing a population is achieved by testing a modest fraction of the population. For example, if women with a 5-year BCSC risk of >2.0% are tested (21% of all women), ~75% of the benefit of testing all women (shifting women above or below 3% 5-year risk) would be derived. If women with a 5-year risk of >1.5% are tested (36% of all women), ~90% of the benefit of testing all women would be derived.

CONCLUSION

SNP testing is effective for reclassification of women for chemoprevention, but is unlikely to reclassify women with <1.5% 5-year risk. These results can be used to implement an efficient two-step testing approach to identify high risk women who may benefit from chemoprevention.

摘要

背景

选择性雌激素受体调节剂(SERM)和芳香化酶抑制剂(AI)可预防乳腺癌。美国预防服务工作组建议,5年乳腺癌风险≥3%的女性考虑进行乳腺癌化学预防。超过70个单核苷酸多态性(SNP)与乳腺癌相关。我们试图确定如何最好地将SNP的风险信息与其他风险因素整合,以便对女性进行化学预防的风险分层。

方法

我们使用了乳腺癌监测联盟(BCSC)风险模型估计的35-69岁女性的风险分布。我们模拟了在BCSC模型中添加70个SNP的效果,并研究了这将如何影响有多少女性在化学预防阈值上下重新分类。

结果

我们发现,对人群进行SNP检测的大部分益处是通过检测一小部分人群实现的。例如,如果对5年BCSC风险>2.0%的女性进行检测(约占所有女性的21%),将获得检测所有女性的约75%的益处(使女性的5年风险高于或低于3%)。如果对5年风险>1.5%的女性进行检测(约占所有女性的36%),将获得检测所有女性的约90%的益处。

结论

SNP检测对于重新分类女性进行化学预防是有效的,但不太可能对5年风险<1.5%的女性进行重新分类。这些结果可用于实施一种有效的两步检测方法,以识别可能从化学预防中受益的高危女性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b5d/5249071/87524cb83071/pone.0168601.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验