Orthopaedic Institute, Medical College, Soochow University, Suzhou, China.
Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China.
J Tissue Eng Regen Med. 2018 Feb;12(2):e1008-e1021. doi: 10.1002/term.2422. Epub 2017 Jun 20.
Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered an attractive cell source for tissue regeneration. However, environmental oxidative stress can trigger premature senescence in MSCs and thus compromises their regenerative potential. Extracellular matrix (ECM) derived from MSCs has been shown to facilitate cell proliferation and multi-lineage differentiation. This investigation evaluated the effect of cell-deposited decellularized ECM (DECM) on oxidative stress-induced premature senescence in UC-MSCs. Sublethal dosages of H O , ranging from 50 μm to 200 μm, were used to induce senescence in MSCs. We found that DECM protected UC-MSCs from oxidative stress-induced premature senescence. When treated with H O at the same concentration, cell proliferation of DECM-cultured UC-MSCs was twofold higher than those on standard tissue culture polystyrene (TCPS). After exposure to 100 μm H O , fewer senescence-associated β-galactosidase-positive cells were observed on DECM than those on TCPS (17.6 ± 4.0% vs. 60.4 ± 6.2%). UC-MSCs cultured on DECM also showed significantly lower levels of senescence-related regulators, such as p16 and p21. Most importantly, DECM preserved the osteogenic differentiation potential of UC-MSCs with premature senescence. The underlying molecular mechanisms involved the silent information regulator type 1 (SIRT1)-dependent signalling pathway, confirmed by the fact that the SIRT1 inhibitor nicotinamide counteracted the DECM-mediated anti-senescent effect. Collagen type I, rather than fibronectin, partially contributed to the protective effect of decellularized matrix. These findings provide a new strategy of using stem cell-deposited matrix to overcome the challenge of cellular senescence and to facilitate the clinical application of MSCs in regenerative medicine. Copyright © 2017 John Wiley & Sons, Ltd.
人脐带间充质干细胞(UC-MSCs)被认为是组织再生有吸引力的细胞来源。然而,环境氧化应激可触发 MSCs 过早衰老,从而损害其再生潜能。已经表明,MSC 衍生的细胞外基质(ECM)可促进细胞增殖和多能分化。本研究评估了细胞沉积去细胞 ECM(DECM)对 UC-MSCs 氧化应激诱导的过早衰老的影响。使用范围从 50μm 至 200μm 的亚致死剂量 H2O2 诱导 MSCs 衰老。我们发现 DECM 可保护 UC-MSCs 免受氧化应激诱导的过早衰老。当用相同浓度的 H2O2 处理时,DECM 培养的 UC-MSCs 的细胞增殖是标准组织培养聚苯乙烯(TCPS)上的两倍。在暴露于 100μm H2O2 后,DECM 上的衰老相关β-半乳糖苷酶阳性细胞比 TCPS 上的少(17.6±4.0%对 60.4±6.2%)。在 DECM 上培养的 UC-MSCs 也显示出明显较低水平的衰老相关调节剂,如 p16 和 p21。最重要的是,DECM 保留了具有过早衰老的 UC-MSCs 的成骨分化潜能。涉及沉默信息调节因子 1(SIRT1)依赖性信号通路的潜在分子机制,通过 SIRT1 抑制剂烟酰胺拮抗 DECM 介导的抗衰老作用得到证实。I 型胶原,而不是纤连蛋白,部分有助于脱细胞基质的保护作用。这些发现为使用干细胞沉积基质克服细胞衰老的挑战并促进 MSCs 在再生医学中的临床应用提供了新策略。版权所有 © 2017 约翰威立父子公司