Suppr超能文献

从细胞到小鼠再到靶点:用于治疗人类非洲锥虫病的NEU-1053(SB-443342)及其类似物的特性研究

From Cells to Mice to Target: Characterization of NEU-1053 (SB-443342) and Its Analogues for Treatment of Human African Trypanosomiasis.

作者信息

Devine William G, Diaz-Gonzalez Rosario, Ceballos-Perez Gloria, Rojas Domingo, Satoh Takashi, Tear Westley, Ranade Ranae M, Barros-Álvarez Ximena, Hol Wim G J, Buckner Frederick S, Navarro Miguel, Pollastri Michael P

机构信息

Department of Chemistry & Chemical Biology, Northeastern University 360 Huntington Avenue, Boston, Massachusetts, United States.

Instituto de Parasitologia y Biomedicina "Lopez-Neyra", Consejo Superior de Investigaciones Cientificas (CSIC) , Granada 18100, Spain.

出版信息

ACS Infect Dis. 2017 Mar 10;3(3):225-236. doi: 10.1021/acsinfecdis.6b00202. Epub 2017 Feb 8.

Abstract

Human African trypanosomiasis is a neglected tropical disease that is lethal if left untreated. Existing therapeutics have limited efficacy and severe associated toxicities. 2-(2-(((3-((1H-Benzo[d]imidazol-2-yl)amino)propyl)amino)methyl)-4,6-dichloro-1H-indol-1-yl)ethan-1-ol (NEU-1053) has recently been identified from a high-throughput screen of >42,000 compounds as a highly potent and fast-acting trypanocidal agent capable of curing a bloodstream infection of Trypanosoma brucei in mice. We have designed a library of analogues to probe the structure-activity relationship and improve the predicted central nervous system (CNS) exposure of NEU-1053. We report the activity of these inhibitors of T. brucei, the efficacy of NEU-1053 in a murine CNS model of infection, and identification of the target of NEU-1053 via X-ray crystallography.

摘要

人类非洲锥虫病是一种被忽视的热带疾病,若不治疗会致命。现有的治疗方法疗效有限且伴有严重毒性。2-(2-(((3-((1H-苯并[d]咪唑-2-基)氨基)丙基)氨基)甲基)-4,6-二氯-1H-吲哚-1-基)乙醇(NEU-1053)最近从对42000多种化合物的高通量筛选中被鉴定出来,是一种高效、速效的杀锥虫剂,能够治愈小鼠血液中的布氏锥虫感染。我们设计了一个类似物库,以探究构效关系,并改善NEU-1053预期的中枢神经系统暴露情况。我们报告了这些布氏锥虫抑制剂的活性、NEU-1053在小鼠中枢神经系统感染模型中的疗效,以及通过X射线晶体学对NEU-1053靶点的鉴定。

相似文献

1
From Cells to Mice to Target: Characterization of NEU-1053 (SB-443342) and Its Analogues for Treatment of Human African Trypanosomiasis.
ACS Infect Dis. 2017 Mar 10;3(3):225-236. doi: 10.1021/acsinfecdis.6b00202. Epub 2017 Feb 8.
2
Hit-to-Lead Optimization of Benzoxazepinoindazoles As Human African Trypanosomiasis Therapeutics.
J Med Chem. 2020 Mar 12;63(5):2527-2546. doi: 10.1021/acs.jmedchem.9b01506. Epub 2019 Nov 20.
3
Optimization of physicochemical properties for 4-anilinoquinazoline inhibitors of trypanosome proliferation.
Eur J Med Chem. 2017 Dec 1;141:446-459. doi: 10.1016/j.ejmech.2017.10.007. Epub 2017 Oct 6.
5
Discovery of 2-(1H-imidazo-2-yl)piperazines as a new class of potent and non-cytotoxic inhibitors of Trypanosoma brucei growth in vitro.
Bioorg Med Chem Lett. 2018 Dec 15;28(23-24):3689-3692. doi: 10.1016/j.bmcl.2018.10.028. Epub 2018 Oct 22.
6
Discovery of Indoline-2-carboxamide Derivatives as a New Class of Brain-Penetrant Inhibitors of Trypanosoma brucei.
J Med Chem. 2015 Oct 8;58(19):7695-706. doi: 10.1021/acs.jmedchem.5b00596. Epub 2015 Sep 29.
9
Identification of potent inhibitors of the Trypanosoma brucei methionyl-tRNA synthetase via high-throughput orthogonal screening.
J Biomol Screen. 2015 Jan;20(1):122-30. doi: 10.1177/1087057114548832. Epub 2014 Aug 27.
10

引用本文的文献

1
Development of SOS1 Inhibitor-Based Degraders to Target -Mutant Colorectal Cancer.
J Med Chem. 2022 Dec 22;65(24):16432-16450. doi: 10.1021/acs.jmedchem.2c01300. Epub 2022 Dec 2.
3
Aminoacyl-tRNA Synthetases as Valuable Targets for Antimicrobial Drug Discovery.
Int J Mol Sci. 2021 Feb 10;22(4):1750. doi: 10.3390/ijms22041750.
4
Discovery of an Allosteric Binding Site in Kinetoplastid Methionyl-tRNA Synthetase.
ACS Infect Dis. 2020 May 8;6(5):1044-1057. doi: 10.1021/acsinfecdis.9b00453. Epub 2020 Apr 28.
6
Novel lead compounds in pre-clinical development against African sleeping sickness.
Medchemcomm. 2017 Jul 31;8(10):1872-1890. doi: 10.1039/c7md00280g. eCollection 2017 Oct 1.
7
Chemical Validation of Methionyl-tRNA Synthetase as a Druggable Target in Leishmania donovani.
ACS Infect Dis. 2017 Oct 13;3(10):718-727. doi: 10.1021/acsinfecdis.7b00047. Epub 2017 Oct 2.

本文引用的文献

1
Inhibitors of methionyl-tRNA synthetase have potent activity against Giardia intestinalis trophozoites.
Antimicrob Agents Chemother. 2015 Nov;59(11):7128-31. doi: 10.1128/AAC.01573-15. Epub 2015 Aug 31.
3
Identification of potent inhibitors of the Trypanosoma brucei methionyl-tRNA synthetase via high-throughput orthogonal screening.
J Biomol Screen. 2015 Jan;20(1):122-30. doi: 10.1177/1087057114548832. Epub 2014 Aug 27.
4
Structures of Trypanosoma brucei methionyl-tRNA synthetase with urea-based inhibitors provide guidance for drug design against sleeping sickness.
PLoS Negl Trop Dis. 2014 Apr 17;8(4):e2775. doi: 10.1371/journal.pntd.0002775. eCollection 2014 Apr.
5
Clinical development success rates for investigational drugs.
Nat Biotechnol. 2014 Jan;32(1):40-51. doi: 10.1038/nbt.2786.
6
Ionic liquid crystals derived from amino acids.
Chemistry. 2013 Nov 18;19(47):16058-65. doi: 10.1002/chem.201302319. Epub 2013 Oct 7.
9
Synthesis and antitubercular activity evaluation of novel unsymmetrical cyclohexane-1,2-diamine derivatives.
Arch Pharm (Weinheim). 2012 Nov;345(11):896-901. doi: 10.1002/ardp.201200219. Epub 2012 Sep 4.
10
Distinct states of methionyl-tRNA synthetase indicate inhibitor binding by conformational selection.
Structure. 2012 Oct 10;20(10):1681-91. doi: 10.1016/j.str.2012.07.011. Epub 2012 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验