Suppr超能文献

基于可调Q因子小波变换和自助聚合的脑电信号癫痫发作检测

Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating.

作者信息

Hassan Ahnaf Rashik, Siuly Siuly, Zhang Yanchun

机构信息

Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.

Centre for Applied Informatics, Victoria University, Melbourne, VIC 8001, Australia.

出版信息

Comput Methods Programs Biomed. 2016 Dec;137:247-259. doi: 10.1016/j.cmpb.2016.09.008. Epub 2016 Sep 26.

Abstract

BACKGROUND AND OBJECTIVE

Epileptic seizure detection is traditionally performed by expert clinicians based on visual observation of EEG signals. This process is time-consuming, burdensome, reliant on expensive human resources, and subject to error and bias. In epilepsy research, on the other hand, manual detection is unsuitable for handling large data-sets. A computerized seizure identification scheme can eradicate the aforementioned problems, aid clinicians, and benefit epilepsy research.

METHODS

In this work, a new automated epilepsy diagnosis scheme based on Tunable-Q factor wavelet transform (TQWT) and bootstrap aggregating (Bagging) using Electroencephalogram (EEG) signals is proposed. Until now, this is the first time spectral features in the TQWT domain in conjunction with Bagging are employed for epilepsy seizure identification to the best of the authors' knowledge. At first, we decompose the EEG signal segments into sub-bands using TQWT. We then extract various spectral features from the TQWT sub-bands. The suitability of spectral features in the TQWT domain is established through statistical measures and graphical analyses. Afterwards, Bagging is employed for epileptic seizure classification. The efficacy of Bagging in the proposed detection scheme is also studied in this research. The effects of various TQWT and Bagging parameters are investigated. The optimal choices of these parameters are also determined. The performance of the proposed scheme is studied using a publicly available benchmark EEG database for various classification cases that include inter-ictal (seizure-free interval), ictal (seizure) and healthy; seizure and non-seizure; ictal and inter-ictal; and seizure and healthy.

RESULTS

In comparison with the state-of-the-art algorithms, the performance of the proposed method is superior in terms of sensitivity, specificity, and accuracy.

CONCLUSION

The seizure detection method proposed herein therefore can alleviate the burden of medical professionals of analyzing a large bulk of data by visual inspection, speed-up epilepsy diagnosis and benefit epilepsy research.

摘要

背景与目的

传统上,癫痫发作检测由专业临床医生基于对脑电图(EEG)信号的视觉观察来进行。这个过程耗时、繁琐,依赖昂贵的人力资源,并且容易出现误差和偏差。另一方面,在癫痫研究中,人工检测不适合处理大数据集。一种计算机化的癫痫发作识别方案可以消除上述问题,帮助临床医生,并有益于癫痫研究。

方法

在这项工作中,提出了一种基于可调Q因子小波变换(TQWT)和自助聚合(Bagging)的新型自动癫痫诊断方案,该方案使用脑电图(EEG)信号。据作者所知,到目前为止,这是首次将TQWT域中的频谱特征与Bagging结合用于癫痫发作识别。首先,我们使用TQWT将EEG信号段分解为子带。然后,我们从TQWT子带中提取各种频谱特征。通过统计测量和图形分析来确定TQWT域中频谱特征的适用性。之后,使用Bagging进行癫痫发作分类。本研究还研究了Bagging在所提出的检测方案中的有效性。研究了各种TQWT和Bagging参数的影响。还确定了这些参数的最佳选择。使用公开可用的基准EEG数据库对所提出方案的性能进行了研究,涉及各种分类情况,包括发作间期(无发作间隔)、发作期(发作)和健康状态;发作与非发作;发作期与发作间期;以及发作与健康。

结果

与现有算法相比,所提出方法在灵敏度、特异性和准确性方面表现更优。

结论

因此,本文提出的癫痫发作检测方法可以减轻医学专业人员通过目视检查分析大量数据的负担,加快癫痫诊断并有益于癫痫研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验