Suppr超能文献

使用线性规划增强算法从脑电图信号中自动识别癫痫发作

Automatic identification of epileptic seizures from EEG signals using linear programming boosting.

作者信息

Hassan Ahnaf Rashik, Subasi Abdulhamit

机构信息

Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.

Computer Science Department, College of Engineering, Effat University, Jeddah 21478, Saudi Arabia.

出版信息

Comput Methods Programs Biomed. 2016 Nov;136:65-77. doi: 10.1016/j.cmpb.2016.08.013. Epub 2016 Aug 25.

Abstract

BACKGROUND AND OBJECTIVE

Computerized epileptic seizure detection is essential for expediting epilepsy diagnosis and research and for assisting medical professionals. Moreover, the implementation of an epilepsy monitoring device that has low power and is portable requires a reliable and successful seizure detection scheme. In this work, the problem of automated epilepsy seizure detection using singe-channel EEG signals has been addressed.

METHODS

At first, segments of EEG signals are decomposed using a newly proposed signal processing scheme, namely complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN). Six spectral moments are extracted from the CEEMDAN mode functions and train and test matrices are formed afterward. These matrices are fed into the classifier to identify epileptic seizures from EEG signal segments. In this work, we implement an ensemble learning based machine learning algorithm, namely linear programming boosting (LPBoost) to perform classification.

RESULTS

The efficacy of spectral features in the CEEMDAN domain is validated by graphical and statistical analyses. The performance of CEEMDAN is compared to those of its predecessors to further inspect its suitability. The effectiveness and the appropriateness of LPBoost are demonstrated as opposed to the commonly used classification models. Resubstitution and 10 fold cross-validation error analyses confirm the superior algorithm performance of the proposed scheme. The algorithmic performance of our epilepsy seizure identification scheme is also evaluated against state-of-the-art works in the literature. Experimental outcomes manifest that the proposed seizure detection scheme performs better than the existing works in terms of accuracy, sensitivity, specificity, and Cohen's Kappa coefficient.

CONCLUSION

It can be anticipated that owing to its use of only one channel of EEG signal, the proposed method will be suitable for device implementation, eliminate the onus of clinicians for analyzing a large bulk of data manually, and expedite epilepsy diagnosis.

摘要

背景与目的

计算机化癫痫发作检测对于加快癫痫诊断与研究以及协助医学专业人员至关重要。此外,实现低功耗且便携的癫痫监测设备需要可靠且成功的发作检测方案。在这项工作中,解决了使用单通道脑电图(EEG)信号进行自动癫痫发作检测的问题。

方法

首先,使用一种新提出的信号处理方案,即带自适应噪声的完全集合经验模态分解(CEEMDAN)对EEG信号段进行分解。从CEEMDAN模态函数中提取六个频谱矩,随后形成训练矩阵和测试矩阵。将这些矩阵输入分类器,以从EEG信号段中识别癫痫发作。在这项工作中,我们实现了一种基于集成学习的机器学习算法,即线性规划增强(LPBoost)来进行分类。

结果

通过图形和统计分析验证了CEEMDAN域中频谱特征的有效性。将CEEMDAN的性能与其前身进行比较,以进一步检验其适用性。与常用分类模型相比,证明了LPBoost的有效性和适用性。再代入和10折交叉验证误差分析证实了所提方案具有卓越的算法性能。我们的癫痫发作识别方案的算法性能也与文献中的最新研究成果进行了评估比较。实验结果表明,所提的发作检测方案在准确性、敏感性、特异性和科恩卡帕系数方面比现有研究成果表现更好。

结论

可以预期,由于所提方法仅使用一个EEG信号通道,它将适用于设备实施,消除临床医生手动分析大量数据的负担,并加快癫痫诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验