Al-Shaikhli Saif Dawood Salman, Yang Michael Ying, Rosenhahn Bodo
School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Institut für Informationsverarbeitung, Leibniz Universität Hannover, Appelstr. 9A, 30167 Hannover, Germany.
ITC - Faculty of Geo-Information Science and Earth Observation, Department of Earth Observation Science, University of Twente, Netherlands.
Comput Methods Programs Biomed. 2016 Dec;137:329-339. doi: 10.1016/j.cmpb.2016.09.007. Epub 2016 Sep 28.
This paper presents a novel method for Alzheimer's disease classification via an automatic 3D caudate nucleus segmentation.
The proposed method consists of segmentation and classification steps. In the segmentation step, we propose a novel level set cost function. The proposed cost function is constrained by a sparse representation of local image features using a dictionary learning method. We present coupled dictionaries: a feature dictionary of a grayscale brain image and a label dictionary of a caudate nucleus label image. Using online dictionary learning, the coupled dictionaries are learned from the training data. The learned coupled dictionaries are embedded into a level set function. In the classification step, a region-based feature dictionary is built. The region-based feature dictionary is learned from shape features of the caudate nucleus in the training data. The classification is based on the measure of the similarity between the sparse representation of region-based shape features of the segmented caudate in the test image and the region-based feature dictionary.
The experimental results demonstrate the superiority of our method over the state-of-the-art methods by achieving a high segmentation (91.5%) and classification (92.5%) accuracy.
In this paper, we find that the study of the caudate nucleus atrophy gives an advantage over the study of whole brain structure atrophy to detect Alzheimer's disease.
本文提出了一种通过自动三维尾状核分割进行阿尔茨海默病分类的新方法。
所提出的方法包括分割和分类步骤。在分割步骤中,我们提出了一种新的水平集代价函数。所提出的代价函数通过使用字典学习方法对局部图像特征的稀疏表示进行约束。我们提出了耦合字典:灰度脑图像的特征字典和尾状核标签图像的标签字典。使用在线字典学习,从训练数据中学习耦合字典。将学习到的耦合字典嵌入到水平集函数中。在分类步骤中,构建基于区域的特征字典。基于区域的特征字典是从训练数据中尾状核的形状特征学习得到的。分类基于测试图像中分割出的尾状核基于区域的形状特征的稀疏表示与基于区域的特征字典之间的相似性度量。
实验结果表明,我们的方法在分割准确率(91.5%)和分类准确率(92.5%)方面优于现有方法。
在本文中,我们发现研究尾状核萎缩在检测阿尔茨海默病方面比研究全脑结构萎缩具有优势。