Suppr超能文献

基于跨图像空间学习字典的图像变换。

Image transformation based on learning dictionaries across image spaces.

机构信息

Advanced Digital Sciences Center, University of Illinois at Urbana-Champaign, IL, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Feb;35(2):367-80. doi: 10.1109/TPAMI.2012.95.

Abstract

In this paper, we propose a framework of transforming images from a source image space to a target image space, based on learning coupled dictionaries from a training set of paired images. The framework can be used for applications such as image super-resolution and estimation of image intrinsic components (shading and albedo). It is based on a local parametric regression approach, using sparse feature representations over learned coupled dictionaries across the source and target image spaces. After coupled dictionary learning, sparse coefficient vectors of training image patch pairs are partitioned into easily retrievable local clusters. For any test image patch, we can fast index into its closest local cluster and perform a local parametric regression between the learned sparse feature spaces. The obtained sparse representation (together with the learned target space dictionary) provides multiple constraints for each pixel of the target image to be estimated. The final target image is reconstructed based on these constraints. The contributions of our proposed framework are three-fold. 1) We propose a concept of coupled dictionary learning based on coupled sparse coding which requires the sparse coefficient vectors of a pair of corresponding source and target image patches to have the same support, i.e., the same indices of nonzero elements. 2) We devise a space partitioning scheme to divide the high-dimensional but sparse feature space into local clusters. The partitioning facilitates extremely fast retrieval of closest local clusters for query patches. 3) Benefiting from sparse feature-based image transformation, our method is more robust to corrupted input data, and can be considered as a simultaneous image restoration and transformation process. Experiments on intrinsic image estimation and super-resolution demonstrate the effectiveness and efficiency of our proposed method.

摘要

在本文中,我们提出了一种基于从配对图像的训练集中学习耦合字典来将图像从源图像空间转换到目标图像空间的框架。该框架可用于图像超分辨率和图像内在成分(阴影和反射率)估计等应用。它基于局部参数回归方法,使用在源和目标图像空间上学习的耦合字典上的稀疏特征表示。在学习了耦合字典之后,训练图像块对的稀疏系数向量被划分为可轻松检索的局部聚类。对于任何测试图像块,我们可以快速索引到其最近的局部聚类,并在学习的稀疏特征空间之间执行局部参数回归。获得的稀疏表示(以及学习的目标空间字典)为要估计的目标图像的每个像素提供了多个约束。最终的目标图像是基于这些约束重建的。我们提出的框架的贡献有三点。1)我们提出了基于耦合稀疏编码的耦合字典学习的概念,该概念要求一对对应源和目标图像块的稀疏系数向量具有相同的支撑,即非零元素的相同索引。2)我们设计了一种空间分区方案,将高维但稀疏的特征空间划分为局部聚类。分区有利于为查询块快速检索最近的局部聚类。3)受益于基于稀疏特征的图像变换,我们的方法对损坏的输入数据更鲁棒,并且可以被视为同时的图像恢复和变换过程。内在图像估计和超分辨率实验证明了我们提出的方法的有效性和效率。

相似文献

1
Image transformation based on learning dictionaries across image spaces.
IEEE Trans Pattern Anal Mach Intell. 2013 Feb;35(2):367-80. doi: 10.1109/TPAMI.2012.95.
2
Coupled dictionary training for image super-resolution.
IEEE Trans Image Process. 2012 Aug;21(8):3467-78. doi: 10.1109/TIP.2012.2192127. Epub 2012 Apr 3.
3
Space-time adaptation for patch-based image sequence restoration.
IEEE Trans Pattern Anal Mach Intell. 2007 Jun;29(6):1096-102. doi: 10.1109/TPAMI.2007.1064.
4
Dictionary learning for stereo image representation.
IEEE Trans Image Process. 2011 Apr;20(4):921-34. doi: 10.1109/TIP.2010.2081679. Epub 2010 Sep 30.
5
Tensor voting for image correction by global and local intensity alignment.
IEEE Trans Pattern Anal Mach Intell. 2005 Jan;27(1):36-50. doi: 10.1109/TPAMI.2005.20.
6
Automatic construction of active appearance models as an image coding problem.
IEEE Trans Pattern Anal Mach Intell. 2004 Oct;26(10):1380-4. doi: 10.1109/TPAMI.2004.77.
7
Nonnegative local coordinate factorization for image representation.
IEEE Trans Image Process. 2013 Mar;22(3):969-79. doi: 10.1109/TIP.2012.2224357. Epub 2012 Oct 12.
8
Sparse representations for range data restoration.
IEEE Trans Image Process. 2012 May;21(5):2909-15. doi: 10.1109/TIP.2012.2185940. Epub 2012 Jan 27.
9
3D model retrieval using probability density-based shape descriptors.
IEEE Trans Pattern Anal Mach Intell. 2009 Jun;31(6):1117-33. doi: 10.1109/TPAMI.2009.25.
10
Deformable segmentation via sparse representation and dictionary learning.
Med Image Anal. 2012 Oct;16(7):1385-96. doi: 10.1016/j.media.2012.07.007. Epub 2012 Aug 23.

引用本文的文献

1
Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression.
J Biomech. 2017 Jun 14;58:162-173. doi: 10.1016/j.jbiomech.2017.05.004. Epub 2017 May 17.
2
Fast acquisition and reconstruction of optical coherence tomography images via sparse representation.
IEEE Trans Med Imaging. 2013 Nov;32(11):2034-49. doi: 10.1109/TMI.2013.2271904. Epub 2013 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验