Vaughan O R, Rosario F J, Powell T L, Jansson T
University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
Prog Mol Biol Transl Sci. 2017;145:217-251. doi: 10.1016/bs.pmbts.2016.12.008. Epub 2017 Jan 16.
The fetus requires amino acids for the processes of protein synthesis, carbon accretion, oxidative metabolism, and biosynthesis, which ultimately determine growth rate in utero. The fetal supply of amino acids is critically dependent on the transport capacity of the placenta. System A amino acid transporters in the syncytiotrophoblast microvillous plasma membrane, directed toward maternal blood, actively accumulate amino acids, while system L exchangers mediate uptake of essential amino acids from the maternal circulation. The functional capacity and protein abundance of these transporters in the placenta are related to fetal growth in both humans and experimental animals. Maternal nutritional and endocrine signals including insulin, insulin-like growth factors, adipokines, and steroid hormones regulate placental amino acid transport, against the background of growth signals originating from the fetus. Anabolic signals of abundant maternal resource availability stimulate placental amino acid transport to optimize offspring fitness, whereas catabolic signals reduce placental amino acid transport in an attempt to ensure survival and long-term reproductive capacity of the mother when resources are scarce. These signals regulate placental amino acid transport by controlling transcription, translation, plasma membrane trafficking, and degradation of transporters. Adaptations in placental amino acid transport capacity may underlie either under- or overgrowth of the fetus when maternal nutrient and hormone levels are altered as a result of altered maternal nutrition or metabolic disease. Strategies to modulate placental amino acid transport may prove effective to normalize fetal growth in intrauterine growth restriction and fetal overgrowth.
胎儿需要氨基酸用于蛋白质合成、碳积累、氧化代谢和生物合成过程,这些过程最终决定子宫内的生长速度。胎儿的氨基酸供应严重依赖于胎盘的转运能力。合体滋养层微绒毛质膜中朝向母体血液的A系统氨基酸转运体可主动积累氨基酸,而L系统交换体介导从母体循环中摄取必需氨基酸。在人类和实验动物中,这些转运体在胎盘中的功能能力和蛋白质丰度都与胎儿生长有关。在源自胎儿的生长信号背景下,包括胰岛素、胰岛素样生长因子、脂肪因子和类固醇激素在内的母体营养和内分泌信号调节胎盘氨基酸转运。丰富的母体资源可用性的合成代谢信号刺激胎盘氨基酸转运以优化后代健康,而分解代谢信号则减少胎盘氨基酸转运,试图在资源稀缺时确保母亲的生存和长期生殖能力。这些信号通过控制转运体的转录、翻译、质膜运输和降解来调节胎盘氨基酸转运。当母体营养和激素水平因母体营养改变或代谢疾病而发生变化时,胎盘氨基酸转运能力的适应性变化可能是胎儿生长不足或过度生长的基础。调节胎盘氨基酸转运的策略可能被证明对使子宫内生长受限和胎儿过度生长的胎儿生长正常化有效。