Khlebnikov Vitaliy, Windschuh Johannes, Siero Jeroen C W, Zaiss Moritz, Luijten Peter R, Klomp Dennis W J, Hoogduin Hans
Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
Division of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ) [German Cancer Research Center], Heidelberg, Germany.
NMR Biomed. 2017 May;30(5). doi: 10.1002/nbm.3687. Epub 2017 Jan 23.
High field MRI is beneficial for chemical exchange saturation transfer (CEST) in terms of high SNR, CNR, and chemical shift dispersion. These advantages may, however, be counter-balanced by the increased transmit field inhomogeneity normally associated with high field MRI. The relatively high sensitivity of the CEST contrast to B inhomogeneity necessitates the development of correction methods, which is essential for the clinical translation of CEST. In this work, two B correction algorithms for the most studied CEST effects, amide-CEST and nuclear Overhauser enhancement (NOE), were analyzed. Both methods rely on fitting the multi-pool Bloch-McConnell equations to the densely sampled CEST spectra. In the first method, the correction is achieved by using a linear B correction of the calculated amide and NOE CEST effects. The second method uses the Bloch-McConnell fit parameters and the desired B amplitude to recalculate the CEST spectra, followed by the calculation of B -corrected amide and NOE CEST effects. Both algorithms were systematically studied in Bloch-McConnell equations and in human data, and compared with the earlier proposed ideal interpolation-based B correction method. In the low B regime of 0.15-0.50 μT (average power), a simple linear model was sufficient to mitigate B inhomogeneity effects on a par with the interpolation B correction, as demonstrated by a reduced correlation of the CEST contrast with B in both the simulations and the experiments.
高场磁共振成像(MRI)在化学交换饱和转移(CEST)方面具有高信噪比(SNR)、高对比度噪声比(CNR)和化学位移分散等优势。然而,这些优势可能会被通常与高场MRI相关的发射场不均匀性增加所抵消。CEST对比对磁场不均匀性的相对较高敏感性使得校正方法的开发成为必要,这对于CEST的临床转化至关重要。在这项工作中,分析了针对研究最多的CEST效应(酰胺-CEST和核Overhauser增强(NOE))的两种磁场校正算法。这两种方法都依赖于将多池Bloch-McConnell方程拟合到密集采样的CEST光谱。在第一种方法中,通过对计算出的酰胺和NOE CEST效应进行线性磁场校正来实现校正。第二种方法使用Bloch-McConnell拟合参数和所需的磁场幅度重新计算CEST光谱,然后计算经磁场校正的酰胺和NOE CEST效应。这两种算法在Bloch-McConnell方程和人体数据中都进行了系统研究,并与早期提出的基于理想插值的磁场校正方法进行了比较。在0.15 - 0.50 μT(平均功率)的低磁场范围内,一个简单的线性模型足以减轻磁场不均匀性对CEST对比度的影响,与插值磁场校正相当,这在模拟和实验中都通过CEST对比度与磁场的相关性降低得到了证明。