Suppr超能文献

基于新型生物信息学的方法预测钙蛋白酶-2 和半胱天冬酶-3 蛋白酶片段化的蛋白质组学生物标志物:应用于βII- spectrin 蛋白。

Novel Bioinformatics-Based Approach for Proteomic Biomarkers Prediction of Calpain-2 &Caspase-3 Protease Fragmentation: Application to βII-Spectrin Protein.

机构信息

Department of Electrical and Computer Engineering, American University of Beirut, Riad El Solh, Beirut, Lebanon.

Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Riad El Solh, Beirut, Lebanon.

出版信息

Sci Rep. 2017 Jan 23;7:41039. doi: 10.1038/srep41039.

Abstract

The crucial biological role of proteases has been visible with the development of degradomics discipline involved in the determination of the proteases/substrates resulting in breakdown-products (BDPs) that can be utilized as putative biomarkers associated with different biological-clinical significance. In the field of cancer biology, matrix metalloproteinases (MMPs) have shown to result in MMPs-generated protein BDPs that are indicative of malignant growth in cancer, while in the field of neural injury, calpain-2 and caspase-3 proteases generate BDPs fragments that are indicative of different neural cell death mechanisms in different injury scenarios. Advanced proteomic techniques have shown a remarkable progress in identifying these BDPs experimentally. In this work, we present a bioinformatics-based prediction method that identifies protease-associated BDPs with high precision and efficiency. The method utilizes state-of-the-art sequence matching and alignment algorithms. It starts by locating consensus sequence occurrences and their variants in any set of protein substrates, generating all fragments resulting from cleavage. The complexity exists in space O(mn) as well as in O(Nmn) time, where N, m, and n are the number of protein sequences, length of the consensus sequence, and length per protein sequence, respectively. Finally, the proposed methodology is validated against βII-spectrin protein, a brain injury validated biomarker.

摘要

蛋白酶的关键生物学作用随着降解组学学科的发展而显现,该学科涉及确定导致降解产物(BDP)的蛋白酶/底物,这些 BDP 可作为与不同生物学-临床意义相关的假定生物标志物加以利用。在癌症生物学领域,基质金属蛋白酶(MMPs)已被证明可导致 MMP 生成的蛋白 BDP,这些 BDP 表明癌症中存在恶性生长,而在神经损伤领域,钙蛋白酶-2 和半胱天冬酶-3 蛋白酶会生成 BDP 片段,表明在不同损伤情况下存在不同的神经细胞死亡机制。先进的蛋白质组学技术在实验中识别这些 BDP 方面取得了显著进展。在这项工作中,我们提出了一种基于生物信息学的预测方法,该方法能够以高精度和高效率识别与蛋白酶相关的 BDP。该方法利用最先进的序列匹配和对齐算法。它首先在任何一组蛋白质底物中定位共识序列的出现及其变体,生成所有由切割产生的片段。其复杂性存在于空间 O(mn)和 O(Nmn)时间中,其中 N、m 和 n 分别是蛋白质序列的数量、共识序列的长度和每个蛋白质序列的长度。最后,该方法针对βII- spectrin 蛋白(一种经验证的脑损伤生物标志物)进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a952/5253643/b82d25cfc104/srep41039-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验