Causero Andrea, Ballmann Gerd, Pahl Jürgen, Färber Christian, Intemann Julia, Harder Sjoerd
Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany.
Dalton Trans. 2017 Feb 14;46(6):1822-1831. doi: 10.1039/c6dt04659b.
A series of (DIPPnacnac)CaN(SiMe)·S complexes (DIPPnacnac = HC[C(Me)N(2,6-iPr-CH)]; S = solvent) could be obtained by the addition of S = THF, DME or N-Me-morpholine (Morph) to (DIPPnacnac)CaN(SiMe)·OEt or (DIPPnacnac)CaN(SiMe). Crystal structures for complexes with S = DME and Morph are compared to literature-known structures with S = none, THF or EtO. Bulkier and weaker Lewis bases like the tertiary amines EtN, TMEDA and DABCO did not interact with (DIPPnacnac)CaN(SiMe). The reaction of (DIPPnacnac)CaN(SiMe) with PhSiH gave conversion to a calcium hydride complex that dismutated in (DIPPnacnac)Ca and CaH. The reaction of (DIPPnacnac)CaN(SiMe)·S with PhSiH gave [(DIPPnacnac)CaH·S] for S = THF, EtO or N-Me-morpholine (Morph). For S = DME, high reaction temperatures were needed and dismutation into (DIPPnacnac)Ca and CaH was observed. Extensive NMR investigations (VT-NMR and PGSE) confirm the dimeric nature of [(DIPPnacnac)CaH·THF] in aromatic solvents or in THF. Thermal decomposition of [(DIPPnacnac)CaH·THF] (release of H at 200 °C) is compared to that of Mg and Zn analogues. Weakly coordinating EtO in [(DIPPnacnac)CaH·OEt] could be replaced by THF, Morph or DABCO but not with EtN. The addition of TMEDA led to the formation of CaH and unidentified products. The addition of DME led to the decomposition of EtO and complex [(DIPPnacnac)CaOEt] was obtained. Crystal structures of the following compounds are presented: (DIPPnacnac)CaN(SiMe)·S (S = Morph, DME), [(DIPPnacnac)CaH·S] (S = EtO, Morph and DABCO) and [(DIPPnacnac)CaOEt]. Although bulky ligands have long been thought to be the key to the stabilization of calcium hydride complexes, the presence of a polar, strongly coordinating, co-solvent is also crucial.
通过向(DIPPnacnac)CaN(SiMe)·OEt或(DIPPnacnac)CaN(SiMe)中加入S = THF、DME或N-甲基吗啉(Morph),可以得到一系列(DIPPnacnac)CaN(SiMe)·S配合物(DIPPnacnac = HC[C(Me)N(2,6-iPr-CH)];S = 溶剂)。将S = DME和Morph的配合物的晶体结构与文献中已知的S = 无、THF或EtO的结构进行了比较。体积更大且碱性较弱的路易斯碱,如叔胺EtN、TMEDA和DABCO,不会与(DIPPnacnac)CaN(SiMe)发生相互作用。(DIPPnacnac)CaN(SiMe)与PhSiH反应生成一种氢化钙配合物,该配合物在(DIPPnacnac)Ca和CaH中发生歧化反应。(DIPPnacnac)CaN(SiMe)·S与PhSiH反应,当S = THF、EtO或N-甲基吗啉(Morph)时,生成[(DIPPnacnac)CaH·S]。当S = DME时,需要较高的反应温度,并且观察到会歧化为(DIPPnacnac)Ca和CaH。广泛的核磁共振研究(变温核磁共振和脉冲梯度自旋回波)证实了[(DIPPnacnac)CaH·THF]在芳香族溶剂或THF中的二聚性质。将[(DIPPnacnac)CaH·THF]的热分解(在200℃释放H)与镁和锌类似物的热分解进行了比较。[(DIPPnacnac)CaH·OEt]中配位能力较弱的EtO可以被THF、Morph或DABCO取代,但不能被EtN取代。加入TMEDA会导致形成CaH和不明产物。加入DME会导致EtO分解,并得到配合物[(DIPPnacnac)CaOEt]。给出了以下化合物的晶体结构:(DIPPnacnac)CaN(SiMe)·S(S = Morph、DME)、[(DIPPnacnac)CaH·S](S = EtO、Morph和DABCO)以及[(DIPPnacnac)CaOEt]。尽管长期以来人们一直认为体积较大的配体是稳定氢化钙配合物键的关键,但极性、强配位的共溶剂的存在也至关重要。