Martín-Gomis Luis, Peralta-Ruiz Francisco, Thomas Michael B, Fernández-Lázaro Fernando, D'Souza Francis, Sastre-Santos Ángela
División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain.
Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA.
Chemistry. 2017 Mar 17;23(16):3863-3874. doi: 10.1002/chem.201603741. Epub 2017 Jan 23.
Sequential photoinduced energy transfer followed by electron transfer and the formation of charge-separated states, which are primary events of natural photosynthesis, have been demonstrated in a newly synthesized multichromophoric covalently linked triad, PDI-SiPc-C . The triad comprises a perylenediimide (PDI), which primarily fulfils antenna and electron-acceptor functionalities, silicon phthalocyanine (SiPc) as an electron donor, and fulleropyrrolidine (C ) as a second electron acceptor. The multi-step convergent synthetic procedure developed here produced good yields of the triad and control dyads, PDI-SiPc and SiPc-C . The structures and geometries of the newly synthesized donor-acceptor systems have been established from spectral, computational, and electrochemical studies with reference to appropriate control compounds. Ultrafast energy transfer from PDI* to SiPc in the case of PDI-SiPc and PDI-SiPc-C was witnessed. An energy-level diagram established from spectral and electrochemical data suggested the formation of two types of charge-separated states, that is, PDI-SiPc -C and PDI -SiPc -C from the SiPc* in the triad, with generation of the latter being energetically more favorable. However, photochemical studies involving femtosecond transient spectroscopy revealed the formation of PDI-SiPc -C as a major charge-separated product. This observation may be rationalized in terms of the closer spatial proximity to SiPc of C compared to PDI in the triad. The charge-separated state persisted for a few nanoseconds prior to populating the SiPc* state during charge recombination.
在新合成的多发色团共价连接三联体PDI-SiPc-C中,已证明了依次发生的光诱导能量转移,随后是电子转移以及电荷分离态的形成,这些都是自然光合作用的主要过程。该三联体包含苝二酰亚胺(PDI),其主要发挥天线和电子受体功能;硅酞菁(SiPc)作为电子供体;以及富勒吡咯烷(C)作为第二个电子受体。这里开发的多步收敛合成方法产生了高产率的三联体以及对照二元体PDI-SiPc和SiPc-C。通过光谱、计算和电化学研究,并参考适当的对照化合物,确定了新合成的供体-受体体系的结构和几何形状。在PDI-SiPc和PDI-SiPc-C的情况下,观察到了从PDI到SiPc的超快能量转移。根据光谱和电化学数据建立的能级图表明形成了两种电荷分离态,即三联体中来自SiPc的PDI-SiPc -C和PDI -SiPc -C,其中后者的生成在能量上更有利。然而,涉及飞秒瞬态光谱的光化学研究表明,PDI-SiPc -C是主要的电荷分离产物。根据三联体中C与PDI相比与SiPc在空间上更接近这一点,可以对这一观察结果做出合理解释。电荷分离态在电荷复合过程中填充SiPc*态之前持续了几纳秒。