文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

面向机器人辅助手术中力反馈的恢复:一种监督神经递归视觉方法。

Towards Retrieving Force Feedback in Robotic-Assisted Surgery: A Supervised Neuro-Recurrent-Vision Approach.

出版信息

IEEE Trans Haptics. 2017 Jul-Sep;10(3):431-443. doi: 10.1109/TOH.2016.2640289. Epub 2016 Dec 15.


DOI:10.1109/TOH.2016.2640289
PMID:28113330
Abstract

Robotic-assisted minimally invasive surgeries have gained a lot of popularity over conventional procedures as they offer many benefits to both surgeons and patients. Nonetheless, they still suffer from some limitations that affect their outcome. One of them is the lack of force feedback which restricts the surgeon's sense of touch and might reduce precision during a procedure. To overcome this limitation, we propose a novel force estimation approach that combines a vision based solution with supervised learning to estimate the applied force and provide the surgeon with a suitable representation of it. The proposed solution starts with extracting the geometry of motion of the heart's surface by minimizing an energy functional to recover its 3D deformable structure. A deep network, based on a LSTM-RNN architecture, is then used to learn the relationship between the extracted visual-geometric information and the applied force, and to find accurate mapping between the two. Our proposed force estimation solution avoids the drawbacks usually associated with force sensing devices, such as biocompatibility and integration issues. We evaluate our approach on phantom and realistic tissues in which we report an average root-mean square error of 0.02 N.

摘要

机器人辅助微创手术相对于传统手术有很多优势,因为它们为外科医生和患者都带来了很多好处。然而,它们仍然存在一些限制,影响了手术的效果。其中之一是缺乏力反馈,这限制了外科医生的触觉感知,可能会降低手术过程中的精度。为了克服这个限制,我们提出了一种新的力估计方法,该方法将基于视觉的解决方案与监督学习相结合,以估计施加的力,并为外科医生提供其合适的表示形式。所提出的解决方案首先通过最小化能量函数来提取心脏表面运动的几何形状,以恢复其 3D 可变形结构。然后,使用基于 LSTM-RNN 架构的深度网络来学习提取的视觉几何信息与施加的力之间的关系,并找到两者之间的精确映射。我们提出的力估计解决方案避免了通常与力感测设备相关的缺点,例如生物相容性和集成问题。我们在模拟和真实组织上评估了我们的方法,报告的平均均方根误差为 0.02N。

相似文献

[1]
Towards Retrieving Force Feedback in Robotic-Assisted Surgery: A Supervised Neuro-Recurrent-Vision Approach.

IEEE Trans Haptics. 2016-12-15

[2]
Force-feedback sensory substitution using supervised recurrent learning for robotic-assisted surgery.

Annu Int Conf IEEE Eng Med Biol Soc. 2015

[3]
Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.

Minim Invasive Ther Allied Technol. 2014-6

[4]
External force estimation and implementation in robotically assisted minimally invasive surgery.

Int J Med Robot. 2017-6

[5]
Vision-Based Suture Tensile Force Estimation in Robotic Surgery.

Sensors (Basel). 2020-12-26

[6]
Force estimation from OCT volumes using 3D CNNs.

Int J Comput Assist Radiol Surg. 2018-5-4

[7]
Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery.

Int J Med Robot. 2014-9

[8]
Study on real-time force feedback for a master-slave interventional surgical robotic system.

Biomed Microdevices. 2018-4-13

[9]
Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.

IEEE Trans Haptics. 2013

[10]
Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model.

Surg Endosc. 2016-8

引用本文的文献

[1]
Visual cues of soft-tissue behaviour in minimal-invasive and robotic surgery.

J Robot Surg. 2024-11-7

[2]
Research on Artificial-Intelligence-Assisted Medicine: A Survey on Medical Artificial Intelligence.

Diagnostics (Basel). 2024-7-9

[3]
Vision-based estimation of manipulation forces by deep learning of laparoscopic surgical images obtained in a porcine excised kidney experiment.

Sci Rep. 2024-4-27

[4]
The development of tissue handling skills is sufficient and comparable after training in virtual reality or on a surgical robotic system: a prospective randomized trial.

Surg Endosc. 2024-5

[5]
A Modular 3-Degrees-of-Freedom Force Sensor for Robot-Assisted Minimally Invasive Surgery Research.

Sensors (Basel). 2023-5-31

[6]
Real-time dynamic simulation for highly accurate spatiotemporal brain deformation from impact.

Comput Methods Appl Mech Eng. 2022-5-1

[7]
Estimation of Tool-Tissue Forces in Robot-Assisted Minimally Invasive Surgery Using Neural Networks.

Front Robot AI. 2019-7-16

[8]
A Piezoelectric Tactile Sensor for Tissue Stiffness Detection with Arbitrary Contact Angle.

Sensors (Basel). 2020-11-18

[9]
Surgeon-Centered Analysis of Robot-Assisted Needle Driving Under Different Force Feedback Conditions.

Front Neurorobot. 2020-1-24

[10]
Artificial intelligence, robotics and eye surgery: are we overfitted?

Int J Retina Vitreous. 2019-12-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索