Suppr超能文献

基于视觉的腹腔镜手术图像深度学习对猪离体肾脏实验中操作力的估计

Vision-based estimation of manipulation forces by deep learning of laparoscopic surgical images obtained in a porcine excised kidney experiment.

作者信息

Masui Kimihiko, Kume Naoto, Nakao Megumi, Magaribuchi Toshihiro, Hamada Akihiro, Kobayashi Takashi, Sawada Atsuro

机构信息

Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Department of Medical Informatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

出版信息

Sci Rep. 2024 Apr 27;14(1):9686. doi: 10.1038/s41598-024-60574-w.

Abstract

In robot-assisted surgery, in which haptics should be absent, surgeons experience haptics-like sensations as "pseudo-haptic feedback". As surgeons who routinely perform robot-assisted laparoscopic surgery, we wondered if we could make these "pseudo-haptics" explicit to surgeons. Therefore, we created a simulation model that estimates manipulation forces using only visual images in surgery. This study aimed to achieve vision-based estimations of the magnitude of forces during forceps manipulation of organs. We also attempted to detect over-force, exceeding the threshold of safe manipulation. We created a sensor forceps that can detect precise pressure at the tips with three vectors. Using an endoscopic system that is used in actual surgery, images of the manipulation of excised pig kidneys were recorded with synchronized force data. A force estimation model was then created using deep learning. Effective detection of over-force was achieved if the region of the visual images was restricted by the region of interest around the tips of the forceps. In this paper, we emphasize the importance of limiting the region of interest in vision-based force estimation tasks.

摘要

在机器人辅助手术中,本应不存在触觉,但外科医生却会将类似触觉的感觉体验为“假触觉反馈”。作为经常进行机器人辅助腹腔镜手术的外科医生,我们想知道是否能让外科医生明确感知到这些“假触觉”。因此,我们创建了一个仅使用手术中的视觉图像来估计操纵力的模拟模型。本研究旨在实现基于视觉的器官钳夹操作过程中力大小的估计。我们还试图检测超过安全操作阈值的过大力。我们制作了一种能通过三个向量检测钳尖精确压力的传感钳。使用实际手术中所用的内镜系统,记录切除猪肾操作的图像,并同步记录力数据。然后利用深度学习创建了一个力估计模型。如果视觉图像区域受钳尖周围感兴趣区域的限制,就能有效检测出过大力。在本文中,我们强调了在基于视觉的力估计任务中限制感兴趣区域的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a89/11055910/9feee16ebaef/41598_2024_60574_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验