Suppr超能文献

深度相对跟踪

Deep Relative Tracking.

作者信息

Gao Junyu, Zhang Tianzhu, Yang Xiaoshan, Xu Changsheng

出版信息

IEEE Trans Image Process. 2017 Apr;26(4):1845-1858. doi: 10.1109/TIP.2017.2656628. Epub 2017 Jan 20.

Abstract

Most existing tracking methods are direct trackers, which directly exploit foreground or/and background information for object appearance modeling and decide whether an image patch is target object or not. As a result, these trackers cannot perform well when target appearance changes heavily and becomes different from its model. To deal with this issue, we propose a novel relative tracker, which can effectively exploit the relative relationship among image patches from both foreground and background for object appearance modeling. Different from direct trackers, the proposed relative tracker is robust to localize target object by use of the best image patch with the highest relative score to target appearance model. To model relative relationship among large-scale image patch pairs, we propose a novel and effective deep relative learning algorithm via Convolutional Neural Network. We test the proposed approach on challenging sequences involving heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that our method consistently outperforms state-of-the-art trackers due to the powerful capacity of the proposed deep relative model.

摘要

大多数现有的跟踪方法都是直接跟踪器,它们直接利用前景或/和背景信息进行目标外观建模,并判断一个图像块是否为目标对象。因此,当目标外观发生严重变化并与模型不同时,这些跟踪器无法很好地工作。为了解决这个问题,我们提出了一种新颖的相对跟踪器,它可以有效地利用前景和背景中图像块之间的相对关系进行目标外观建模。与直接跟踪器不同,所提出的相对跟踪器通过使用与目标外观模型具有最高相对分数的最佳图像块来定位目标对象,具有很强的鲁棒性。为了对大规模图像块对之间的相对关系进行建模,我们通过卷积神经网络提出了一种新颖有效的深度相对学习算法。我们在具有严重遮挡、剧烈光照变化和大姿态变化的具有挑战性的序列上测试了所提出的方法。实验结果表明,由于所提出的深度相对模型的强大能力,我们的方法始终优于现有最先进的跟踪器。

相似文献

1
Deep Relative Tracking.深度相对跟踪
IEEE Trans Image Process. 2017 Apr;26(4):1845-1858. doi: 10.1109/TIP.2017.2656628. Epub 2017 Jan 20.
3
Robust superpixel tracking.鲁棒的超像素跟踪。
IEEE Trans Image Process. 2014 Apr;23(4):1639-51. doi: 10.1109/TIP.2014.2300823.
4
Interacting Multiview Tracker.交互多视图跟踪器。
IEEE Trans Pattern Anal Mach Intell. 2016 May;38(5):903-17. doi: 10.1109/TPAMI.2015.2473862. Epub 2015 Aug 27.
5
Tracking by Sampling and IntegratingMultiple Trackers.基于采样和整合的多目标跟踪。
IEEE Trans Pattern Anal Mach Intell. 2014 Jul;36(7):1428-41. doi: 10.1109/TPAMI.2013.213.
6
Visual Tracking via Dynamic Graph Learning.基于动态图学习的视觉跟踪
IEEE Trans Pattern Anal Mach Intell. 2019 Nov;41(11):2770-2782. doi: 10.1109/TPAMI.2018.2864965. Epub 2018 Aug 13.
7
Robust object tracking via sparse collaborative appearance model.基于稀疏协同表观模型的鲁棒目标跟踪。
IEEE Trans Image Process. 2014 May;23(5):2356-68. doi: 10.1109/TIP.2014.2313227.
9
Robust Object Tracking With Discrete Graph-Based Multiple Experts.基于离散图的多专家鲁棒目标跟踪。
IEEE Trans Image Process. 2017 Jun;26(6):2736-2750. doi: 10.1109/TIP.2017.2686601. Epub 2017 Mar 23.
10
Robust Visual Tracking via Hierarchical Convolutional Features.基于分层卷积特征的鲁棒视觉跟踪。
IEEE Trans Pattern Anal Mach Intell. 2019 Nov;41(11):2709-2723. doi: 10.1109/TPAMI.2018.2865311. Epub 2018 Aug 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验