Suppr超能文献

用于线性混合像元分解和端元不确定性估计的空间成分模型。

A spatial compositional model for linear unmixing and endmember uncertainty estimation.

作者信息

Zhou Yuan, Rangarajan Anand, Gader Paul D

出版信息

IEEE Trans Image Process. 2016 Dec;25(12):5987-6002. doi: 10.1109/TIP.2016.2618002. Epub 2016 Oct 18.

Abstract

The normal compositional model (NCM) has been extensively used in hyperspectral unmixing. However, previous research has mostly focused on estimation of endmembers and/or their variability, based on the assumption that the pixels are independent random variables. In this paper, we show that this assumption does not hold if all the pixels are generated by a fixed endmember set. This introduces another concept, endmember uncertainty, which is related to whether the pixels fit into the endmember simplex. To further develop this idea, we derive the NCM from the ground up without the pixel independence assumption, along with (i) using different noise levels at different wavelengths and (ii) using a spatial and sparsity promoting prior for the abundances. The resulting new formulation is called the spatial compositional model (SCM) to better differentiate it from the NCM. The SCM maximum a posteriori (MAP) objective leads to an optimization problem featuring noise weighted least-squares minimization for unmixing. The problem is solved by projected gradient descent, resulting in an algorithm that estimates endmembers, abundances, noise variances, and endmember uncertainty simultaneously. We compared SCM with current state-of-the-art algorithms on synthetic and real images. The results show that SCM can in the main provide more accurate endmembers and abundances. Moreover, the estimated uncertainty can serve as a prediction of endmember error under certain conditions.

摘要

正常成分模型(NCM)已在高光谱解混中得到广泛应用。然而,以往的研究大多基于像素是独立随机变量这一假设,聚焦于端元估计和/或其变异性。在本文中,我们表明,如果所有像素均由固定的端元集生成,该假设并不成立。这引入了另一个概念,即端元不确定性,它与像素是否适合端元单纯形有关。为进一步拓展这一理念,我们在不做像素独立性假设的情况下,重新推导了NCM,同时(i)在不同波长使用不同噪声水平,以及(ii)对丰度采用空间和稀疏性增强先验。由此产生的新公式被称为空间成分模型(SCM),以便更好地将其与NCM区分开来。SCM最大后验(MAP)目标导致一个以噪声加权最小二乘最小化进行解混的优化问题。该问题通过投影梯度下降法求解,得到一种能同时估计端元、丰度、噪声方差和端元不确定性的算法。我们在合成图像和真实图像上,将SCM与当前最先进的算法进行了比较。结果表明,SCM总体上能提供更准确的端元和丰度。此外,在某些条件下,估计的不确定性可作为端元误差的一种预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验