Suppr超能文献

基于概率的语义保持哈希的跨视图检索。

Cross-View Retrieval via Probability-Based Semantics-Preserving Hashing.

出版信息

IEEE Trans Cybern. 2017 Dec;47(12):4342-4355. doi: 10.1109/TCYB.2016.2608906. Epub 2016 Sep 29.

Abstract

For efficiently retrieving nearest neighbors from large-scale multiview data, recently hashing methods are widely investigated, which can substantially improve query speeds. In this paper, we propose an effective probability-based semantics-preserving hashing (SePH) method to tackle the problem of cross-view retrieval. Considering the semantic consistency between views, SePH generates one unified hash code for all observed views of any instance. For training, SePH first transforms the given semantic affinities of training data into a probability distribution, and aims to approximate it with another one in Hamming space, via minimizing their Kullback-Leibler divergence. Specifically, the latter probability distribution is derived from all pair-wise Hamming distances between to-be-learnt hash codes of the training data. Then with learnt hash codes, any kind of predictive models like linear ridge regression, logistic regression, or kernel logistic regression, can be learnt as hash functions in each view for projecting the corresponding view-specific features into hash codes. As for out-of-sample extension, given any unseen instance, the learnt hash functions in its observed views can predict view-specific hash codes. Then by deriving or estimating the corresponding output probabilities with respect to the predicted view-specific hash codes, a novel probabilistic approach is further proposed to utilize them for determining a unified hash code. To evaluate the proposed SePH, we conduct extensive experiments on diverse benchmark datasets, and the experimental results demonstrate that SePH is reasonable and effective.

摘要

为了有效地从大规模多视图数据中检索最近邻,最近广泛研究了哈希方法,这可以大大提高查询速度。在本文中,我们提出了一种有效的基于概率的语义保持哈希(SePH)方法来解决跨视图检索问题。考虑到视图之间的语义一致性,SePH 为任何实例的所有观察视图生成一个统一的哈希码。对于训练,SePH 首先将给定的语义相似性转换为概率分布,并通过最小化它们的 Kullback-Leibler 散度来近似另一个在 Hamming 空间中的概率分布。具体来说,后者的概率分布是从要学习的训练数据的哈希码之间的所有成对汉明距离推导出来的。然后,利用学习到的哈希码,可以学习任何种类的预测模型,如线性岭回归、逻辑回归或核逻辑回归,作为每个视图中的哈希函数,将相应的视图特定特征投影到哈希码中。对于样本外扩展,给定任何未见过的实例,在其观察到的视图中学习到的哈希函数可以预测视图特定的哈希码。然后,通过推导或估计与预测的视图特定哈希码相对应的输出概率,进一步提出了一种新的概率方法来利用它们确定统一的哈希码。为了评估所提出的 SePH,我们在各种基准数据集上进行了广泛的实验,实验结果表明 SePH 是合理和有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验