Suppr超能文献

基于图正则化的自动编码器图像表示方法。

Graph Regularized Auto-Encoders for Image Representation.

出版信息

IEEE Trans Image Process. 2017 Jun;26(6):2839-2852. doi: 10.1109/TIP.2016.2605010. Epub 2016 Aug 31.

Abstract

Image representation has been intensively explored in the domain of computer vision for its significant influence on the relative tasks such as image clustering and classification. It is valuable to learn a low-dimensional representation of an image which preserves its inherent information from the original image space. At the perspective of manifold learning, this is implemented with the local invariant idea to capture the intrinsic low-dimensional manifold embedded in the high-dimensional input space. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE). With the graph regularization, the proposed method preserves the local connectivity from the original image space to the representation space, while the stacked auto-encoders provide explicit encoding model for fast inference and powerful expressive capacity for complex modeling. Theoretical analysis shows that the graph regularizer penalizes the weighted Frobenius norm of the Jacobian matrix of the encoder mapping, where the weight matrix captures the local property in the input space. Furthermore, the underlying effects on the hidden representation space are revealed, providing insightful explanation to the advantage of the proposed method. Finally, the experimental results on both clustering and classification tasks demonstrate the effectiveness of our GAE as well as the correctness of the proposed theoretical analysis, and it also suggests that GAE is a superior solution to the current deep representation learning techniques comparing with variant auto-encoders and existing local invariant methods.

摘要

图像表示在计算机视觉领域得到了广泛的研究,因为它对图像聚类和分类等相关任务有重要的影响。从图像空间中学习到保留其内在信息的低维表示是很有价值的。从流形学习的角度来看,这是通过局部不变性的思想来实现的,以捕捉嵌入在高维输入空间中的内在低维流形。受深度架构最近成功的启发,我们提出了一种局部不变的深度非线性映射算法,称为图正则自动编码器(GAE)。通过图正则化,所提出的方法保留了从原始图像空间到表示空间的局部连接性,而堆叠的自动编码器则提供了快速推断的显式编码模型和复杂建模的强大表达能力。理论分析表明,图正则项惩罚编码器映射的雅可比矩阵的加权 Frobenius 范数,其中权重矩阵捕获了输入空间中的局部特性。此外,还揭示了隐藏表示空间的潜在影响,为所提出方法的优势提供了有见地的解释。最后,聚类和分类任务的实验结果证明了我们的 GAE 的有效性以及所提出的理论分析的正确性,并且还表明 GAE 是当前深度表示学习技术的一种优越解决方案,与变体自动编码器和现有的局部不变性方法相比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验