Suppr超能文献

基于子空间建模的原始激光雷达数据的形状检测。

Shape Detection from Raw LiDAR Data with Subspace Modeling.

出版信息

IEEE Trans Vis Comput Graph. 2017 Sep;23(9):2137-2150. doi: 10.1109/TVCG.2016.2601915. Epub 2016 Aug 31.

Abstract

LiDAR scanning has become a prevalent technique for digitalizing large-scale outdoor scenes. However, the raw LiDAR data often contain imperfections, e.g., missing large regions, anisotropy of sampling density, and contamination of noise and outliers, which are the major obstacles that hinder its more ambitious and higher level applications in digital city modeling. Observing that 3D urban scenes can be locally described with several low dimensional subspaces, we propose to locally classify the neighborhoods of the scans to model the substructures of the scenes. The key enabler is the adaptive kernel-scale scoring, filtering and clustering of substructures, making it possible to recover the local structures at all points simultaneously, even in the presence of severe data imperfections. Integrating the local analyses leads to robust shape detection from raw LiDAR data. On this basis, we develop several urban scene applications and verify them on a number of LiDAR scans with various complexities and styles, which demonstrates the effectiveness and robustness of our methods.

摘要

激光雷达扫描已成为数字化大规模户外场景的流行技术。然而,原始激光雷达数据通常存在缺陷,例如,大面积缺失、采样密度各向异性、以及噪声和异常值的污染,这些都是阻碍其在数字城市建模等更具雄心和更高层次的应用的主要障碍。我们观察到三维城市场景可以用几个低维子空间来局部描述,因此我们提出局部分类扫描的邻域来模拟场景的子结构。关键的推动因素是自适应核尺度评分、子结构的滤波和聚类,这使得即使在存在严重数据缺陷的情况下,也能够在所有点同时恢复局部结构。整合局部分析可从原始激光雷达数据中稳健地检测形状。在此基础上,我们开发了一些城市场景应用,并在具有各种复杂度和风格的多个激光雷达扫描上进行了验证,这证明了我们方法的有效性和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验