Tien Po-Lung
IEEE Trans Neural Netw Learn Syst. 2017 Nov;28(11):2674-2685. doi: 10.1109/TNNLS.2016.2600410. Epub 2016 Aug 26.
In this paper, we propose a novel discrete-time recurrent neural network aiming to resolve a new class of multi-constrained K-winner-take-all (K-WTA) problems. By facilitating specially designed asymmetric neuron weights, the proposed model is capable of operating in a fully parallel manner, thereby allowing true digital implementation. This paper also provides theorems that delineate the theoretical upper bound of the convergence latency, which is merely O(K). Importantly, via simulations, the average convergence time is close to O(1) in most general cases. Moreover, as the multi-constrained K-WTA problem degenerates to a traditional single-constrained problem, the upper bound becomes exactly two parallel iterations, which significantly outperforms the existing K-WTA models. By associating the neurons and neuron weights with routing paths and path priorities, respectively, we then apply the model to a prioritized flow scheduler for the data center networks. Through extensive simulations, we demonstrate that the proposed scheduler converges to the equilibrium state within near-constant time for different scales of networks while achieving maximal throughput, quality-of-service priority differentiation, and minimum energy consumption, subject to the flow contention-free constraints.
在本文中,我们提出了一种新颖的离散时间递归神经网络,旨在解决一类新的多约束K胜者全得(K-WTA)问题。通过引入专门设计的非对称神经元权重,所提出的模型能够以完全并行的方式运行,从而实现真正的数字实现。本文还给出了定理,阐述了收敛延迟的理论上限,该上限仅为O(K)。重要的是,通过仿真,在大多数一般情况下平均收敛时间接近O(1)。此外,当多约束K-WTA问题退化为传统的单约束问题时,上限恰好变为两个并行迭代,这显著优于现有的K-WTA模型。通过分别将神经元和神经元权重与路由路径和路径优先级相关联,我们随后将该模型应用于数据中心网络的优先级流调度器。通过广泛的仿真,我们证明了所提出的调度器在不同规模的网络中能在近乎恒定的时间内收敛到平衡状态,同时在无流竞争约束的情况下实现最大吞吐量、服务质量优先级区分和最小能耗。