IEEE Trans Cybern. 2017 Dec;47(12):4074-4085. doi: 10.1109/TCYB.2016.2597259. Epub 2016 Sep 13.
In this paper, we study the state estimation and optimal control [i.e., linear quadratic Gaussian (LQG) control] problems for networked control systems in which control inputs, observations, and packet acknowledgments (ACKs) are randomly lost. The packet ACK is a signal that is transmitted from the actuator to notice the estimator the occurence of control packet loss. For such systems, we obtain the optimal estimator, which is consisted of exponentially increasing terms. For the solvability of the LQG problem, we come to a conclusion that in general even the optimal LQG control exists, it is impossible and unnecessary to be obtained as its calculation is not only technically difficult but also computationally prohibitive. This issue motivates us to design a suboptimal LQG controller for the underlying systems. We first develop a suboptimal estimator by using the estimator gain in each term of the optimal estimator. Then we derive a suboptimal LQG controller and establish the conditions for stability of the closed-loop systems. Examples are given to illustrate the effectiveness and advantages of the proposed design scheme.
在本文中,我们研究了网络控制系统中的状态估计和最优控制(即线性二次高斯(LQG)控制)问题,其中控制输入、观测和数据包确认(ACK)会随机丢失。数据包 ACK 是从执行器发送的信号,用于通知估计器控制数据包丢失的发生。对于这样的系统,我们得到了最优估计器,它由指数增长项组成。对于 LQG 问题的可解性,我们得出一个结论,即一般来说,即使存在最优 LQG 控制,也不可能也没有必要获得它,因为它的计算不仅技术上困难,而且计算上也是不可行的。这个问题促使我们为基础系统设计一个次优的 LQG 控制器。我们首先通过使用最优估计器中每个项的估计增益来开发一个次优估计器。然后,我们推导出一个次优的 LQG 控制器,并建立了闭环系统稳定性的条件。通过示例来说明所提出设计方案的有效性和优势。