Suppr超能文献

随机非线性网络模型中传播动力学的线性反馈控制:癫痫发作

Linear feedback control of spreading dynamics in stochastic nonlinear network models: epileptic seizures.

作者信息

Moosavi S A, Truccolo W

机构信息

Department of Neuroscience, Brown University, Providence RI, USA.

Carney Institute for Brain Science, Brown University, Providence RI, USA.

出版信息

Int IEEE EMBS Conf Neural Eng. 2023 Apr;2023. doi: 10.1109/ner52421.2023.10123896. Epub 2023 May 19.

Abstract

The development of models and approaches for controlling the spreading dynamics of epileptic seizures is an essential step towards new therapies for people with pharmacologically resistant epilepsy. Beyond resective neurosurgery, in which epileptogenic zones (EZs) are the target of surgery, closed-loop control based on intracranial electrical stimulation, applied at the very early stage of seizure evolution, has been the main alternative, e.g. the RNS system from NeuroPace (Mountain View, CA). In this approach the electrical stimulation is delivered to target brain areas after detection of seizure initiation in the EZ. Here, we examined, on model simulations, some of the closed-loop control aspects of the problem. Seizure dynamics and spread are typically modeled with highly nonlinear dynamics on complex brain networks. Despite the nonlinearity and complexity, currently available optimal feedback control approaches are mostly based on linear approximations. Alternative machine learning control approaches might require amounts of data beyond what is commonly available in the intended application. We thus examined how standard linear feedback control approaches perform when applied to nonlinear models of neural dynamics of seizure generation and spread. In particular, we considered patient-specific epileptor network models for seizure onset and spread. The models incorporate network connectivity derived from (diffusion MRI) white-matter tractography, have been shown to capture the qualitative dynamics of epileptic seizures and can be fit to patient data. For control, we considered simple linear quadratic Gaussian (LQG) regulators. The LQG control was based on a discrete-time state-space model derived from the linearization of the patient-specific epileptor network model around a stable fixed point in the regime of preictal dynamics. We show in simulations that LQG regulators acting on the EZ node during the initial seizure period tend to be unstable. The LQG solution for the control law in this case leads to global feedback to the EZ-node actuator. However, if the LQG solution is constrained to depend on only local feedback originating from the EZ node itself, the controller is stable. In this case, we demonstrate that localized LQG can easily terminate the seizure at the early stage and prevent spread. In the context of optimal feedback control based on linear approximations, our results point to the need for investigating in more detail feedback localization and additional relevant control targets beyond epileptogenic zones.

摘要

开发控制癫痫发作传播动态的模型和方法是朝着为药物难治性癫痫患者开发新疗法迈出的重要一步。除了以癫痫病灶区(EZs)为手术靶点的切除性神经外科手术外,基于颅内电刺激的闭环控制,在癫痫发作演变的早期阶段应用,一直是主要的替代方法,例如NeuroPace(加利福尼亚州山景城)的RNS系统。在这种方法中,在检测到EZ中癫痫发作起始后,将电刺激传递到目标脑区。在此,我们在模型模拟中研究了该问题的一些闭环控制方面。癫痫发作动态和传播通常用复杂脑网络上的高度非线性动力学来建模。尽管存在非线性和复杂性,但目前可用的最优反馈控制方法大多基于线性近似。替代的机器学习控制方法可能需要超出预期应用中通常可用的数据量。因此,我们研究了标准线性反馈控制方法应用于癫痫发作产生和传播的神经动力学非线性模型时的表现。特别是,我们考虑了针对癫痫发作起始和传播的患者特异性癫痫发作网络模型。这些模型纳入了从(扩散磁共振成像)白质纤维束成像得出的网络连接性,已被证明能够捕捉癫痫发作的定性动态,并且可以拟合患者数据。为了进行控制,我们考虑了简单的线性二次高斯(LQG)调节器。LQG控制基于一个离散时间状态空间模型,该模型由患者特异性癫痫发作网络模型在发作前期动力学状态下围绕一个稳定不动点进行线性化得到。我们在模拟中表明,在初始癫痫发作期作用于EZ节点的LQG调节器往往是不稳定的。在这种情况下,控制律的LQG解导致对EZ节点执行器的全局反馈。然而,如果将LQG解限制为仅依赖于源自EZ节点本身的局部反馈,则控制器是稳定的。在这种情况下,我们证明局部LQG可以很容易地在早期阶段终止癫痫发作并防止其传播。在基于线性近似的最优反馈控制背景下,我们的结果表明需要更详细地研究反馈局部化以及除癫痫病灶区之外的其他相关控制目标。

相似文献

9

本文引用的文献

5
A taxonomy of seizure dynamotypes.癫痫发作动力学类型分类法。
Elife. 2020 Jul 21;9:e55632. doi: 10.7554/eLife.55632.
9
Brain-responsive neurostimulation for epilepsy (RNS System).用于癫痫治疗的脑响应神经刺激(RNS系统)。
Epilepsy Res. 2019 Jul;153:68-70. doi: 10.1016/j.eplepsyres.2019.02.003. Epub 2019 Feb 20.
10
Controlling seizure propagation in large-scale brain networks.控制大规模脑网络中的癫痫发作传播。
PLoS Comput Biol. 2019 Feb 25;15(2):e1006805. doi: 10.1371/journal.pcbi.1006805. eCollection 2019 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验