IEEE Trans Image Process. 2016 Jul;25(7):3273-3286. doi: 10.1109/TIP.2016.2567069. Epub 2016 May 11.
Inspired by the popular deep learning architecture, deep stacking network (DSN), a specific deep model for polarimetric synthetic aperture radar (POLSAR) image classification is proposed in this paper, which is named Wishart DSN (W-DSN). First of all, a fast implementation of Wishart distance is achieved by a special linear transformation, which speeds up the classification of POLSAR image and makes it possible to use this polarimetric information in the following neural network (NN). Then, a single-hidden-layer NN based on the fast Wishart distance is defined for POLSAR image classification, which is named Wishart network (WN) and improves the classification accuracy. Finally, a multi-layer NN is formed by stacking WNs, which is in fact the proposed deep learning architecture W-DSN for POLSAR image classification and improves the classification accuracy further. In addition, the structure of WN can be expanded in a straightforward way by adding hidden units if necessary, as well as the structure of the W-DSN. As a preliminary exploration on formulating specific deep learning architecture for POLSAR image classification, the proposed methods may establish a simple but clever connection between POLSAR image interpretation and deep learning. The experiment results tested on real POLSAR image show that the fast implementation of Wishart distance is very efficient (a POLSAR image with 768 000 pixels can be classified in 0.53 s), and both the single-hidden-layer architecture WN and the deep learning architecture W-DSN for POLSAR image classification perform well and work efficiently.
受流行的深度学习架构——深度堆叠网络(DSN)的启发,本文提出了一种用于极化合成孔径雷达(POLSAR)图像分类的特定深度模型,称为Wishart DSN(W-DSN)。首先,通过一种特殊的线性变换实现了Wishart距离的快速计算,这加快了POLSAR图像的分类速度,并使得在后续神经网络(NN)中使用这种极化信息成为可能。然后,定义了一种基于快速Wishart距离的单隐藏层NN用于POLSAR图像分类,称为Wishart网络(WN),并提高了分类精度。最后,通过堆叠WN形成多层NN,这实际上就是所提出的用于POLSAR图像分类的深度学习架构W-DSN,并进一步提高了分类精度。此外,如果需要,可以通过添加隐藏单元直接扩展WN的结构,W-DSN的结构也可以如此。作为对为POLSAR图像分类制定特定深度学习架构的初步探索,所提出的方法可能在POLSAR图像解释与深度学习之间建立一种简单而巧妙的联系。在真实POLSAR图像上进行的实验结果表明,Wishart距离的快速计算非常高效(一幅768000像素的POLSAR图像可在0.53秒内完成分类),并且用于POLSAR图像分类的单隐藏层架构WN和深度学习架构W-DSN都表现良好且工作高效。