Suppr超能文献

用于室内场景识别的卷积特征判别表示

A Discriminative Representation of Convolutional Features for Indoor Scene Recognition.

作者信息

Khan Salman H, Hayat Munawar, Bennamoun Mohammed, Togneri Roberto, Sohel Ferdous A

出版信息

IEEE Trans Image Process. 2016 Jul;25(7):3372-3383. doi: 10.1109/TIP.2016.2567076. Epub 2016 May 11.

Abstract

Indoor scene recognition is a multi-faceted and challenging problem due to the diverse intra-class variations and the confusing inter-class similarities that characterize such scenes. This paper presents a novel approach that exploits rich mid-level convolutional features to categorize indoor scenes. Traditional convolutional features retain the global spatial structure, which is a desirable property for general object recognition. We, however, argue that the structure-preserving property of the convolutional neural network activations is not of substantial help in the presence of large variations in scene layouts, e.g., in indoor scenes. We propose to transform the structured convolutional activations to another highly discriminative feature space. The representation in the transformed space not only incorporates the discriminative aspects of the target data set but also encodes the features in terms of the general object categories that are present in indoor scenes. To this end, we introduce a new large-scale data set of 1300 object categories that are commonly present in indoor scenes. Our proposed approach achieves a significant performance boost over the previous state-of-the-art approaches on five major scene classification data sets.

摘要

室内场景识别是一个多方面且具有挑战性的问题,因为此类场景具有多样的类内变化和令人困惑的类间相似性。本文提出了一种利用丰富的中级卷积特征对室内场景进行分类的新方法。传统的卷积特征保留了全局空间结构,这对于一般目标识别来说是一个理想的属性。然而,我们认为,在场景布局存在较大变化的情况下,例如在室内场景中,卷积神经网络激活的结构保留属性并没有太大帮助。我们建议将结构化的卷积激活转换到另一个高度有区分性的特征空间。在转换后的空间中的表示不仅包含目标数据集的区分性方面,还根据室内场景中存在的一般物体类别对特征进行编码。为此,我们引入了一个包含1300个室内场景中常见物体类别的新大规模数据集。我们提出的方法在五个主要场景分类数据集上比之前的最先进方法有显著的性能提升。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验