Deussen Oliver
IEEE Trans Image Process. 2017 Jan;26(1):464-478. doi: 10.1109/TIP.2016.2628581. Epub 2016 Nov 14.
This paper presents a data-driven approach for automatically generating cartoon faces in different styles from a given portrait image. Our stylization pipeline consists of two steps: an offline analysis step to learn about how to select and compose facial components from the databases; a runtime synthesis step to generate the cartoon face by assembling parts from a database of stylized facial components. We propose an optimization framework that, for a given artistic style, simultaneously considers the desired image-cartoon relationships of the facial components and a proper adjustment of the image composition. We measure the similarity between facial components of the input image and our cartoon database via image feature matching, and introduce a probabilistic framework for modeling the relationships between cartoon facial components. We incorporate prior knowledge about image-cartoon relationships and the optimal composition of facial components extracted from a set of cartoon faces to maintain a natural, consistent, and attractive look of the results. We demonstrate generality and robustness of our approach by applying it to a variety of portrait images and compare our output with stylized results created by artists via a comprehensive user study.
本文提出了一种数据驱动的方法,用于从给定的肖像图像自动生成不同风格的卡通脸。我们的风格化流程包括两个步骤:一个离线分析步骤,用于了解如何从数据库中选择和组合面部组件;一个运行时合成步骤,通过从风格化面部组件数据库中组装部件来生成卡通脸。我们提出了一个优化框架,对于给定的艺术风格,该框架同时考虑面部组件所需的图像与卡通的关系以及图像构图的适当调整。我们通过图像特征匹配来测量输入图像的面部组件与我们的卡通数据库之间的相似度,并引入一个概率框架来对面部卡通组件之间的关系进行建模。我们纳入了关于图像与卡通关系以及从一组卡通脸中提取的面部组件的最佳构图的先验知识,以保持结果自然、一致且具有吸引力。我们通过将其应用于各种肖像图像来证明我们方法的通用性和鲁棒性,并通过全面的用户研究将我们的输出与艺术家创作的风格化结果进行比较。