IEEE Trans Cybern. 2018 Jan;48(1):253-263. doi: 10.1109/TCYB.2016.2631528. Epub 2016 Dec 2.
In this paper, we present a large-scale sparse learning (LSSL) approach to solve the challenging task of semantic segmentation of images with noisy tags. Different from the traditional strongly supervised methods that exploit pixel-level labels for semantic segmentation, we make use of much weaker supervision (i.e., noisy tags of images) and then formulate the task of semantic segmentation as a weakly supervised learning (WSL) problem from the view point of noise reduction of superpixel labels. By learning the data manifolds, we transform the WSL problem into an LSSL problem. Based on nonlinear approximation and dimension reduction techniques, a linear-time-complexity algorithm is developed to solve the LSSL problem efficiently. We further extend the LSSL approach to visual feature refinement for semantic segmentation. The experiments demonstrate that the proposed LSSL approach can achieve promising results in semantic segmentation of images with noisy tags.
在本文中,我们提出了一种大规模稀疏学习(LSSL)方法,以解决具有噪声标签的图像语义分割这一具有挑战性的任务。与传统的利用像素级标签进行语义分割的强监督方法不同,我们利用更弱的监督(即图像的噪声标签),然后从超像素标签降噪的角度将语义分割任务表述为一个弱监督学习(WSL)问题。通过学习数据流形,我们将 WSL 问题转化为 LSSL 问题。基于非线性逼近和降维技术,开发了一种具有线性时间复杂度的算法来有效地解决 LSSL 问题。我们进一步将 LSSL 方法扩展到用于语义分割的视觉特征细化。实验结果表明,所提出的 LSSL 方法在具有噪声标签的图像语义分割中能够取得有前景的结果。