Suppr超能文献

基于含噪标签的大规模稀疏学习的语义分割。

Large-Scale Sparse Learning From Noisy Tags for Semantic Segmentation.

出版信息

IEEE Trans Cybern. 2018 Jan;48(1):253-263. doi: 10.1109/TCYB.2016.2631528. Epub 2016 Dec 2.

Abstract

In this paper, we present a large-scale sparse learning (LSSL) approach to solve the challenging task of semantic segmentation of images with noisy tags. Different from the traditional strongly supervised methods that exploit pixel-level labels for semantic segmentation, we make use of much weaker supervision (i.e., noisy tags of images) and then formulate the task of semantic segmentation as a weakly supervised learning (WSL) problem from the view point of noise reduction of superpixel labels. By learning the data manifolds, we transform the WSL problem into an LSSL problem. Based on nonlinear approximation and dimension reduction techniques, a linear-time-complexity algorithm is developed to solve the LSSL problem efficiently. We further extend the LSSL approach to visual feature refinement for semantic segmentation. The experiments demonstrate that the proposed LSSL approach can achieve promising results in semantic segmentation of images with noisy tags.

摘要

在本文中,我们提出了一种大规模稀疏学习(LSSL)方法,以解决具有噪声标签的图像语义分割这一具有挑战性的任务。与传统的利用像素级标签进行语义分割的强监督方法不同,我们利用更弱的监督(即图像的噪声标签),然后从超像素标签降噪的角度将语义分割任务表述为一个弱监督学习(WSL)问题。通过学习数据流形,我们将 WSL 问题转化为 LSSL 问题。基于非线性逼近和降维技术,开发了一种具有线性时间复杂度的算法来有效地解决 LSSL 问题。我们进一步将 LSSL 方法扩展到用于语义分割的视觉特征细化。实验结果表明,所提出的 LSSL 方法在具有噪声标签的图像语义分割中能够取得有前景的结果。

相似文献

1
Large-Scale Sparse Learning From Noisy Tags for Semantic Segmentation.基于含噪标签的大规模稀疏学习的语义分割。
IEEE Trans Cybern. 2018 Jan;48(1):253-263. doi: 10.1109/TCYB.2016.2631528. Epub 2016 Dec 2.
2
Learning from Weak and Noisy Labels for Semantic Segmentation.从弱标签和含噪标签中学习语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Mar;39(3):486-500. doi: 10.1109/TPAMI.2016.2552172. Epub 2016 Apr 8.
6
A Probabilistic Associative Model for Segmenting Weakly-Supervised Images.一种用于分割弱监督图像的概率关联模型。
IEEE Trans Image Process. 2014 Sep;23(9):4150-4159. doi: 10.1109/TIP.2014.2344433. Epub 2014 Jul 30.
9
Weakly Supervised Deep Matrix Factorization for Social Image Understanding.弱监督深度矩阵分解在社会图像理解中的应用。
IEEE Trans Image Process. 2017 Jan;26(1):276-288. doi: 10.1109/TIP.2016.2624140. Epub 2016 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验