IEEE Trans Neural Netw Learn Syst. 2017 Dec;28(12):2911-2923. doi: 10.1109/TNNLS.2016.2609437. Epub 2016 Sep 27.
Passenger profiling plays a vital part of commercial aviation security, but classical methods become very inefficient in handling the rapidly increasing amounts of electronic records. This paper proposes a deep learning approach to passenger profiling. The center of our approach is a Pythagorean fuzzy deep Boltzmann machine (PFDBM), whose parameters are expressed by Pythagorean fuzzy numbers such that each neuron can learn how a feature affects the production of the correct output from both the positive and negative sides. We propose a hybrid algorithm combining a gradient-based method and an evolutionary algorithm for training the PFDBM. Based on the novel learning model, we develop a deep neural network (DNN) for classifying normal passengers and potential attackers, and further develop an integrated DNN for identifying group attackers whose individual features are insufficient to reveal the abnormality. Experiments on data sets from Air China show that our approach provides much higher learning ability and classification accuracy than existing profilers. It is expected that the fuzzy deep learning approach can be adapted for a variety of complex pattern analysis tasks.
旅客分析在商业航空安全中起着至关重要的作用,但经典方法在处理快速增长的电子记录时效率非常低。本文提出了一种基于深度学习的旅客分析方法。我们的方法的核心是基于 Pythagorean 模糊深度玻尔兹曼机(PFDBM),其参数用 Pythagorean 模糊数表示,这样每个神经元都可以从正反两方面学习一个特征如何影响正确输出的产生。我们提出了一种混合算法,结合基于梯度的方法和进化算法来训练 PFDBM。基于新颖的学习模型,我们开发了一个用于分类正常旅客和潜在攻击者的深度神经网络(DNN),并进一步开发了一个用于识别个体特征不足以揭示异常的群体攻击者的集成 DNN。基于中国国际航空公司数据集的实验表明,与现有分析器相比,我们的方法提供了更高的学习能力和分类精度。预计模糊深度学习方法可以适应各种复杂的模式分析任务。