Yanik M, Wende W, Stieger K
Klinik und Poliklinik für Augenheilkunde, Justus-Liebig-Universität Gießen, Fachbereich Medizin.
Institut für Biochemie, Justus-Liebig-Universität Gießen, Fachbereich 08 Biologie und Chemie.
Klin Monbl Augenheilkd. 2017 Mar;234(3):329-334. doi: 10.1055/s-0042-119205. Epub 2017 Jan 23.
New genome editing tools in molecular biology are revolutionising precise genome surgery and have greatly influenced experimental ophthalmology too. Aside from the commonly used nuclease-based platforms, such as the zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN), CRISPR/Cas systems, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes, perform very efficiently in site-specific DNA cleavage within living cells. DNA double strand breaks (DSB) are repaired through two different conserved repair pathways: NHEJ (non-homologous end joining) and HDR (homology directed repair). By using the correct DNA templates, these repair pathways can be used to knock out defective genes or to repair mutations. Genome editing technology lays the ground for new strategies in basic science, biotechnology, and biomedical science, as well as clinical studies with genome editing. Therapeutic gene editing strategies are now concentrating on diseases in the retina, due to the comparatively easy accessibility of the eye and with local application in vivo.
分子生物学中的新型基因组编辑工具正在彻底改变精确的基因组手术,也对实验眼科学产生了巨大影响。除了常用的基于核酸酶的平台,如锌指核酸酶(ZFN)和转录激活样效应核酸酶(TALEN)外,CRISPR/Cas系统,即成簇规律间隔短回文重复序列(CRISPR)和CRISPR相关(Cas)基因,在活细胞内的位点特异性DNA切割中表现非常高效。DNA双链断裂(DSB)通过两种不同的保守修复途径进行修复:非同源末端连接(NHEJ)和同源定向修复(HDR)。通过使用正确的DNA模板,这些修复途径可用于敲除缺陷基因或修复突变。基因组编辑技术为基础科学、生物技术和生物医学科学中的新策略以及基因组编辑的临床研究奠定了基础。由于眼睛相对容易接近且可在体内局部应用,治疗性基因编辑策略目前正集中于视网膜疾病。