Pellagatti Andrea, Dolatshad Hamid, Yip Bon Ham, Valletta Simona, Boultwood Jacqueline
Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK.
Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NIHR Biomedical Research Centre, Oxford, UK.
Adv Biol Regul. 2016 Jan;60:122-134. doi: 10.1016/j.jbior.2015.09.005. Epub 2015 Sep 26.
Genome editing technologies have advanced significantly over the past few years, providing a fast and effective tool to precisely manipulate the genome at specific locations. The three commonly used genome editing technologies are Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas9 (CRISPR/Cas9) system. ZFNs and TALENs consist of endonucleases fused to a DNA-binding domain, while the CRISPR/Cas9 system uses guide RNAs to target the bacterial Cas9 endonuclease to the desired genomic location. The double-strand breaks made by these endonucleases are repaired in the cells either by non-homologous end joining, resulting in the introduction of insertions/deletions, or, if a repair template is provided, by homology directed repair. The ZFNs, TALENs and CRISPR/Cas9 systems take advantage of these repair mechanisms for targeted genome modification and have been successfully used to manipulate the genome in human cells. These genome editing tools can be used to investigate gene function, to discover new therapeutic targets, and to develop disease models. Moreover, these genome editing technologies have great potential in gene therapy. Here, we review the latest advances in the application of genome editing technology to the study and treatment of hematological disorders.
在过去几年中,基因组编辑技术取得了显著进展,提供了一种快速有效的工具来在特定位置精确操纵基因组。三种常用的基因组编辑技术是锌指核酸酶(ZFNs)、转录激活样效应核酸酶(TALENs)以及成簇规律间隔短回文重复序列(CRISPR)相关的Cas9(CRISPR/Cas9)系统。ZFNs和TALENs由与DNA结合结构域融合的核酸内切酶组成,而CRISPR/Cas9系统使用引导RNA将细菌Cas9核酸内切酶靶向到所需的基因组位置。这些核酸内切酶产生的双链断裂在细胞中通过非同源末端连接进行修复,导致插入/缺失的引入,或者,如果提供了修复模板,则通过同源定向修复进行修复。ZFNs、TALENs和CRISPR/Cas9系统利用这些修复机制进行靶向基因组修饰,并已成功用于在人类细胞中操纵基因组。这些基因组编辑工具可用于研究基因功能、发现新的治疗靶点以及开发疾病模型。此外,这些基因组编辑技术在基因治疗方面具有巨大潜力。在此,我们综述基因组编辑技术在血液系统疾病研究和治疗应用中的最新进展。